精英家教网 > 高中数学 > 题目详情
设P(x0,y0)是抛物线y2=2px(p>0)上异于顶点的定点,A(x1,y1),B(x2,y2)是抛物线上的两个动点,且直线PA与PB的倾斜角互补
(1)求
y1+y2
y0
的值
(2)证明直线AB的斜率是非零常数.
(I)设直线PA的斜率为kPA,直线PB的斜率为k PB
由y12=2px1,y02=2px0
相减得(y1-y0)(y1+y0)=2p(x1-x0
kPA=
y1-y0
x1-x0
=
2p
y1+y0
(x1x0)

同理可得 kPB=
2p
y2+y0
(x2x0)

由PA,PB倾斜角互补知kPA=-kPB
2p
y1+y0
=-
2p
y2+y0

所以y1+y2=-2y0
y1+y2
y0
=-2

(II)设直线AB的斜率为kAB
由y22=2px2,y12=2px1
相减得(y2-y1)(y2+y1)=2p(x2-x1
所以 kAB=
y2-y1
x2-x1
=
2p
y1+y2
(x1x2)

将y1+y2=-2y0(y0>0)代入得kAB=
2p
y1+y2
=-
p
y0
,所以kAB是非零常数.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设双曲线C的中心在原点,焦点在x轴上,离心率为2,其一个顶点的坐标是(
1
3
,0)
;又直线l:y=kx+1与双曲线C相交于不同的A、B两点.
(Ⅰ)求双曲线C的标准方程;
(Ⅱ)是否存在实数k,使得以线段AB为直径的圆过坐标的原点?若存在,求出k的值;若不存在,写出理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(文)已知椭圆
x2
36
+
y2
9
=1
的一条弦的中点为P(4,2),求此弦所在直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设F1、F2为椭圆
x2
9
+
y2
4
=1
的两个焦点,P为椭圆上一点,已知P、F1、F2是一个直角三角形的三个顶点,且|PF1|>|PF2|,则
|PF1|
|PF2|
的值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点A(1,0),定直线l:x=-1,B为l上的一个动点,过B作直线m⊥l,连接AB,作线段AB的垂直平分线n,交直线m于点M.
(1)求点M的轨迹C的方程;
(2)过点N(4,0)作直线h与点M的轨迹C相交于不同的两点P,Q,求证OP⊥OQ(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知直线l:y=2x-4交抛物线y2=4x于A、B两点,试在抛物线AOB这段曲线上求一点P,使△ABP的面积最大,并求这个最大面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线mx+ny=4和⊙O:x2+y2=4相交,则点P(m,n)与椭圆C:
x2
4
+
y2
3
=1的位置关系为(  )
A.点P在椭圆C内B.点P在椭圆C上
C.点P在椭圆C外D.以上三种均有可能

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知线段AB的端点B的坐标是(1,2),端点A在圆(x+1)2+y2=4上运动,点M是AB的中点.
(1)若点M的轨迹为曲线C,求此曲线的方程;
(2)设直线l:x+y+3=0,求曲线C上的点到直线l距离的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,过点M(4,0)的直线l与抛物线C2分别相交于A,B两点.
(Ⅰ)写出抛物线C2的标准方程;
(Ⅱ)若
AM
=
1
2
MB
,求直线l的方程;
(Ⅲ)若坐标原点O关于直线l的对称点P在抛物线C2上,直线l与椭圆C1有公共点,求椭圆C1的长轴长的最小值.

查看答案和解析>>

同步练习册答案