精英家教网 > 高中数学 > 题目详情
(文)已知椭圆
x2
36
+
y2
9
=1
的一条弦的中点为P(4,2),求此弦所在直线l的方程.
设弦的端点坐标为(x1,y1),(x2,y2),
则x1+x2=8,y1+y2=4,
代入椭圆方程可得,
x12
36
+
y12
9
=1
①,
x22
36
+
y22
9
=1
②,
①-②得,
x12-x22
36
+
y12-y22
9
=0

整理可得
y1-y2
x1-x2
=-
x1+x2
4(y1+y2)
=-
1
2

即kAB=-
1
2

由点斜式可得直线方程为:y-2=-
1
2
(x-4),即x+2y-8=0,
经检验符合题意,
此弦所在直线l的方程:x+2y-8=0.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C1
x2
4
+
y2
3
=1
和抛物线C2:y2=2px(p>0),过点M(1,0)且倾斜角为
π
3
的直线与抛物线交于A、B,与椭圆交于C、D,当|AB|:|CD|=5:3时,求p的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,将圆p:x2+y2=4上任意一点P′的纵坐标变为原来的一半(横坐标不变),得到点P,并设点P的轨迹为曲线C.
(1)求C的方程;
(2)设o为坐标原点,过点Q(
3
,0)的直线l与曲线C交于两点A,B,线段AB的中点为N,且
OE
=2
ON
,点E在曲线C上,求直线l:
x
a
+
y
b
=1
的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

斜率为2的直线l与双曲线
x2
3
-
y2
2
=1
交于A,B两点,且|AB|=4,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知抛物线C:y2=4x焦点为F,直线l经过点F且与抛物线C相交于A,B两点
(Ⅰ)若线段AB的中点在直线y=1上,求直线l的方程;
(Ⅱ)若线段|AB|=20,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知焦点在x轴上的椭圆
x2
20
+
y2
b2
=1(b>0)
经过点M(4,1),直线l:y=x+m交椭圆于A,B两不同的点.
(1)求该椭圆的标准方程;
(2)求实数m的取值范围;
(3)是否存在实数m,使△ABM为直角三角形,若存在,求出m的值,若不存,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,设点F坐标为(1,0),点P在y轴上运动,点M在x轴运动上,其中
PM
PF
=0,若动点N满足条件
PN
=
MP

(Ⅰ)求动点N的轨迹E的方程;
(Ⅱ)过点F(1,0)的直线l和l′分别与曲线E交于A、B两点和C、D两点,若l⊥l′,试求四边形ACBD的面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设P(x0,y0)是抛物线y2=2px(p>0)上异于顶点的定点,A(x1,y1),B(x2,y2)是抛物线上的两个动点,且直线PA与PB的倾斜角互补
(1)求
y1+y2
y0
的值
(2)证明直线AB的斜率是非零常数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线l:y=2x与抛物线C:y=
1
4
x2
交于A(xA,yA)、O(0,0)两点,过点O与直线l垂直的直线交抛物线C于点B(xB,yB).如图所示.
(1)求抛物线C的焦点坐标;
(2)求经过A、B两点的直线与y轴交点M的坐标;
(3)过抛物线y=
1
4
x2
的顶点任意作两条互相垂直的直线,过这两条直线与抛物线的交点A、B的直线AB是否恒过定点,如果是,指出此定点,并证明你的结论;如果不是,请说明理由.

查看答案和解析>>

同步练习册答案