精英家教网 > 高中数学 > 题目详情
3.已知数列{an}的前n项和为Sn=$\frac{{n}^{2}+n}{2}$,n∈N*,则数列{$\frac{1}{\sqrt{{a}_{n}}+\sqrt{{a}_{n+1}}}$}前n项和Tn=$\sqrt{n+1}$-1.

分析 由数列{an}的前n项和为Sn=$\frac{{n}^{2}+n}{2}$,n∈N*,利用${a}_{n}=\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{n}-{S}_{n-1},n≥2}\end{array}\right.$求出an=n,再由$\frac{1}{\sqrt{{a}_{n}}+\sqrt{{a}_{n+1}}}$=$\frac{1}{\sqrt{n}+\sqrt{n+1}}$=$\sqrt{n+1}-\sqrt{n}$,利用裂项求和法能求出数列{$\frac{1}{\sqrt{{a}_{n}}+\sqrt{{a}_{n+1}}}$}前n项和Tn

解答 解:∵数列{an}的前n项和为Sn=$\frac{{n}^{2}+n}{2}$,n∈N*
∴${a}_{1}={S}_{n}=\frac{{1}^{2}+1}{2}$=1,
n≥2时,an=Sn-Sn-1=$\frac{{n}^{2}+n}{2}-\frac{(n-1)^{2}+(n-1)}{2}$=n,
n=1时,上式成立,
∴an=n.
∴$\frac{1}{\sqrt{{a}_{n}}+\sqrt{{a}_{n+1}}}$=$\frac{1}{\sqrt{n}+\sqrt{n+1}}$=$\sqrt{n+1}-\sqrt{n}$,
∴Tn=$\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+…+\sqrt{n+1}-\sqrt{n}$=$\sqrt{n+1}-1$.
故答案为:$\sqrt{n+1}-1$.

点评 本题考查数列的前n项和的求法,是中档题,解题时要认真审题,注意公式${a}_{n}=\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{n}-{S}_{n-1},n≥2}\end{array}\right.$和裂项求和法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ln(-$\frac{1}{x}$)+$\frac{x+a}{x}$(a∈R)
(1)讨论函数f(x)的单调性
(2)函数y=h(x)与函数y=f(x)的图象关于原点对称且h(1)=0,就函数y分别求下面两问:
(I)问是否存在过点(1,-1)的直线与函数y=h(x)的图象相切?若存在,有几条直线,若不存在,说明理由
(Ⅱ)求证:对下任意正整数n.均有1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$≥ln$\frac{{e}^{n}}{n!}$(e为自然对数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ex,g(x)=lnx,
(1)求证:f(x)≥x+1;
(2)求h(x)=$\frac{g(x)+1}{f(x)}$的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=x(x-1)
(1)画出f(x)的图象,并求出f(x)的解析式.
(2)求不等式f(x)<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x),g(x)都是R上的奇函数,不等式f(x)>0,g(x)>0的解集分别为(m,n),($\frac{m}{2}$,$\frac{n}{2}$)(0<m<$\frac{n}{2}$),则不等式f(x)g(x)>0的解集是{x|m<x<$\frac{n}{2}$或-$\frac{n}{2}$<x<-m}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.解下列方程.
(1)0.11-3x=0.001;
(2)3-2x+3-$\frac{1}{27}$=0;
(3)($\frac{1}{4}$)x-2-32=0;
(4)a2x+1=a-x-5(a>0且a≠1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f($\frac{1-x}{1+x}$)=x+1,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数F(x)=f(x)+f(-x),x∈R,其中[-1,-$\frac{1}{2}$]是函数F(x)的一个单调递增区间,将函数 F(x)的图象向右平移1个单位,得到一个新的函数G(x)的图象,则G(x)的一个单调递减区间是[$\frac{3}{2}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列各组对象不能构成一个集合的是(  )
A.不超过19的非负实数
B.方程x2-64=0在实数范围内的解
C.$\sqrt{5}$的近似值的全体
D.某育才中学2017级身高超过175cm的同学

查看答案和解析>>

同步练习册答案