精英家教网 > 高中数学 > 题目详情
定义在[-2,2]上的偶函数f(x)在区间[0,2]上单调递减,若f(1-m)<f(m),则实数m的取值范围是(  )
A、m<
1
2
B、m>
1
2
C、-1≤m<
1
2
D、
1
2
<m≤2
考点:奇偶性与单调性的综合
专题:计算题,函数的性质及应用
分析:由题条件知函数在[0,2]上是减函数,在[-2,0]上是增函数,其规律是自变量的绝对值越小,其函数值越大,由此可直接将f(1-m)<f(m)转化成一般不等式,再结合其定义域可以解出m的取值范围.
解答: 解:∵函数是偶函数,∴f(1-m)=f(|1-m|),f(m)=f(|m|),
∵定义在[-2,2]上的偶函数f(x)在区间[0,2]上单调递减,f(1-m)<f(m),
∴0≤|m|<|1-m|≤2,得-1≤m<
1
2

故选:C.
点评:本题考点是奇偶性与单调性的综合,考查利用抽象函数的单调性解抽象不等式,解决此类题的关键是将函数的性质进行正确的转化,将抽象不等式转化为一般不等式求解.本题在求解中有一点易疏漏,即忘记根据定义域为[-2,2]来限制参数的范围.做题一定要严谨,转化要注意验证是否等价.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x|x-2|
(1)在给出的坐标系中作出y=f(x)的图象,并写出f(x)的单调区间
(2)若集合{x|f(x)=a}恰有三个元素,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某电视台为了宣传安徽沿江城市经济崛起的情况,特举办了一期有奖知识问答活动,活动对18~48岁的人群随机抽取n人回答问题“沿江城市带包括哪几个城市”,统计数据结果如下表:
组数分组回答正确的人数占本组的频率
第1组[18,28)240x
第2组[28,38)3000.6
第3组[38,48]a0.4
(1)分别求出n,a,x的值;
(2)若以表中的频率近似看作各年龄组正确回答问题的概率,规定年龄在[38,48]内回答正确的得奖金200元,年龄在[18,28)内回答正确的得奖金100元.主持人随机请一家庭的两个成员(父亲46岁,孩子21岁)回答问题,求该家庭获得奖金ξ的分布列及数学期望(两个回答问题正确与否相互独立).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2+x-6y+m=0和直线l:x+y-3=0
(Ⅰ)求m的取值范围;
(Ⅱ)当圆C与直线l相切时,求圆C关于直线l的对称圆方程;
(Ⅲ)若圆C与直线l交于P、Q两点,是否存在m,使以PQ为直径的圆经过原点O?

查看答案和解析>>

科目:高中数学 来源: 题型:

下列各图中,不能表示函数y=f(x)的图象的是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

如果奇函数f(x)在区间[3,7]上是增函数,且最小值是2014,那么函数f(x)在区间[-7,-3]上是(  )
A、增函数且最小值为-2014
B、增函数且最大值为-2014
C、减函数且最小值为-2014
D、减函数且最大值为-2014

查看答案和解析>>

科目:高中数学 来源: 题型:

数列1,
1
2
1
2
1
3
1
3
1
3
1
4
1
4
1
4
1
4
,…前130项的和等于(  )
A、15
1
8
B、15
5
8
C、15
3
16
D、15
11
16

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是(-∞,+∞)上的偶函数,f(x+2)=f(x),当0≤x≤1时,f(x)=x2+1,则f(-5)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+a(x+lnx),x>0,a∈R是常数.
(1)求函数y=f(x)的图象在点(1,f(1))处的切线方程;
(2)若函数y=f(x)图象上的点都在第一象限,试求常数a的取值范围;
(3)证明:?a∈R,存在ξ∈(1,e),使f′(ξ)=
f(e)-f(1)
e-1

查看答案和解析>>

同步练习册答案