如图所示,求图中曲边梯形的面积.
(只要求写出极限形式)![]()
|
(1)分割:如图所示,将区间[a,b]任意分割成n个小区间,其分点记为:
(2) 近似代替:在每个小区间上任取一点,记为以小区间长度 则有 (3) 求和:将所有n个小矩形面积加起来,得
(4) 取极限:如果分点的数目无限增多,且每个小区间的长度趋近于零时,和式①的极限存在,则和式①的极限就是所求曲边梯形的面积S.即 |
解析: 利用无限逼近的思想先分割,用小矩形面积近似代替曲边梯形面积,分割越细,所求的近似值就越接近于曲边梯形面积的真实值,通过求极限,就可以得到所求面积的真实值,这种方法称之为微分法. |
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源:2011-2012学年湖南师大附中高三(下)第八次月考数学试卷(理科)(解析版) 题型:解答题
查看答案和解析>>
科目:高中数学 来源:《三角函数》2013年高三一轮复习单元训练(北京师范大学附中)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com