精英家教网 > 高中数学 > 题目详情

(本小题14分)已知函数,设

(Ⅰ)求F(x)的单调区间;

(Ⅱ)若以图象上任意一点为切点的切线的斜率 恒成立,求实数的最小值。

(Ⅲ)是否存在实数,使得函数的图象与的图象恰好有四个不同的交点?若存在,求出的取值范围,若不存在,说名理由。

 

【答案】

(1)  

(2)

(3)

【解析】

试题分析:解.(Ⅰ)    

 ……3分

(Ⅱ)

  当

  …………………………………………7分

(Ⅲ)若的图象与

的图象恰有四个不同交点,

有四个不同的根,亦即

有四个不同的根。

,……………………10分

变化时的变化情况如下表:

(-1,0)

(0,1)

(1,)

的符号

+

-

+

-

的单调性

由表格知:。……12分

画出草图和验证可知,当时,

 ………………14分

考点:本试题考查了函数单调性的知识点。

点评:对于运用导数求解函数的单调区间,一般先求解定义域,再求导数,然后分析导数大于零或小于零的解集得到单调区间,有参数的要加以讨论。而给定函数的单调性递增,确定参数的范围,需要利用导数恒大于等于零,分离参数的思想求解取值范围,这是常考查的常用个的方法,需要熟练的掌握。同时图像的之间的交点问题,一般是利用转换为方程的根的问题来处理得到,属于中档题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题14分)已知圆,过点作圆的切线为切点.

(1)求所在直线的方程;

(2)求切线长

(3)求直线的方程.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年北京市高三第四次月考文科数学试卷(解析版) 题型:解答题

(本小题14分)

已知等比数列满足,且的等差中项.

(Ⅰ)求数列的通项公式;

(Ⅱ)若,求使  成立的正整数的最小值.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年陕西省高三上学期月考理科数学 题型:解答题

(本小题14分)已知函数的图像与函数的图像关于点

 

对称

(1)求函数的解析式;

(2)若在区间上的值不小于6,求实数a的取值范围.

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年四川省高三2月月考数学理卷 题型:解答题

(本小题14分)

已知函数的图像在[a,b]上连续不断,定义:

,其中表示函数在D上的最小值,表示函数在D上的最大值,若存在最小正整数k,使得对任意的成立,则称函数上的“k阶收缩函数”

(1)若,试写出的表达式;

(2)已知函数试判断是否为[-1,4]上的“k阶收缩函数”,

如果是,求出对应的k,如果不是,请说明理由;

已知,函数是[0,b]上的2阶收缩函数,求b的取值范围

 

查看答案和解析>>

同步练习册答案