精英家教网 > 高中数学 > 题目详情
已知点F(
1
2
,0)
,动圆P经过点F,与直线x=-
1
2
相切,设动圆的圆心P的轨迹为曲线W,且直线x-y=m与曲线W相交于A(x1,y1),B(x2,y2)两点,O为坐标原点.
(1)求曲线W的方程;
(2)当m=2时,证明:OA⊥OB;
(3)当y1y2=-2m时,是否存在m∈R,使得
OA
OB
=-1?若存在,求出m的值;若不存在,请说明理由.
分析:(1)确定动圆圆心P的轨迹是以F为焦点,以x=-
1
2
为准线的抛物线,即可得到曲线W的方程;
(2)直线方程与抛物线方程联立,求得A,B的坐标,即可得到结论;
(3)由于A,B两点在抛物线上,可得
y12=2x1
y22=2x2
,利用
OA
OB
=-1,建立方程,即可求出m的值.
解答:(1)解:过动圆圆心P作PN⊥直线x=-
1
2
,垂足为N,则有|PF|=|PN|,
∴动圆圆心P的轨迹是以F为焦点,以x=-
1
2
为准线的抛物线,
故曲线W的方程为y2=2x.
(2)证明:当m=2时,由
x-y=2
y2=2x
得x2-6x+4=0,
解得x1=3+
5
x2=3-
5

因此y1=1+
5
y2=1-
5

于是x1x2+y1y2=(3+
5
)(3-
5
)+(1+
5
)(1-
5
)
=0,
OA
OB
=0

所以OA⊥OB
(3)解:假设存在实数m满足题意,由于A,B两点在抛物线上,故
y12=2x1
y22=2x2

因此x1x2=
1
4
(y1y2)2=m2

所以
OA
OB
=x1x2+y1y2=m2-2m

OA
OB
=-1
,即m2-2m=-1,得m=1.
又当m=1时,经验证直线与抛物线有两个交点,
所以存在实数m=1,使得
OA
OB
=-1
点评:本题考查轨迹方程,考查向量知识的运用,考查直线与抛物线的位置关系,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点F,A分别是椭圆
x2
a2
+
y2
b2
=1 (a>b>0)
的左焦点、右顶点,B(0,b)满足
FB
AB
=0
,则椭圆的离心率等于(  )
A、
3
+1
2
B、
5
-1
2
C、
3
-1
2
D、
5
+1
2

查看答案和解析>>

科目:高中数学 来源:云南省昆明一中2007届高三年级上学期第四次月考 数学试题 题型:044

解答题:解答应写出文字说明,证明过程或演算步骤.

(理科14分文科12分)已知点F(1,0),点P在y轴上运动,点M在x轴上运动.设P(0,b),M(a,0),且,动点N满足

(1)

求点N的轨迹C的方程

(2)

F′为曲线C的准线与x轴的交点,过点F′的直线l交曲线C于不同的两点A、B,若D为AB中点,在x轴上存在一点E,使,求的取值范围(O为坐标原点)

(3)

(理科做)Q为直线x=-1上任一点,过Q点作曲线C的两条切线l1l2,求证l1l2

查看答案和解析>>

科目:高中数学 来源:2012-2013学年新疆乌鲁木齐地区高三第一次诊断性测验文科数学试卷(解析版) 题型:解答题

(本小题满分12分)

已知点F( 1,0),与直线4x+3y + 1 =0相切,动圆M与及y轴都相切. (I )求点M的轨迹C的方程;(II)过点F任作直线l,交曲线C于A,B两点,由点A,B分别向各引一条切线,切点 分别为P,Q,记.求证是定值.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点F(
1
2
,0)
,动圆P经过点F,与直线x=-
1
2
相切,设动圆的圆心P的轨迹为曲线W,且直线x-y=m与曲线W相交于A(x1,y1),B(x2,y2)两点,O为坐标原点.
(1)求曲线W的方程;
(2)当m=2时,证明:OA⊥OB;
(3)当y1y2=-2m时,是否存在m∈R,使得
OA
OB
=-1?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案