精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥S﹣ABCD中,△ABD是正三角形,CB=CD,SC⊥BD.
(1)求证:SA⊥BD;
(2)若∠BCD=120°,M为棱SA的中点,求证:DM∥平面SBC.

【答案】
(1)如图示:

证明:设BD中点为O,连接OC,OE,则由BC=CD知,CO⊥BD,

又已知SC⊥BD,SC⊥CO=C,所以BD⊥平面SOC,

∵△ABD是正三角形,∴AO是BD的中垂线,

故A、O、C在同一直线上,

故平面SAC即平面SOC,

由BD⊥OC,BD⊥SC,得BD⊥平面SAC,

故SA⊥BD


(2)证明:取AB中点N,连接DM,MN,DN,

∵M是SA的中点,∴MN∥BE,

∵△ABD是正三解形,∴DN⊥AB,

∵∠BCD=120°得∠CBD=30°,∴∠ABC=90°,即BC⊥AB,

所以ND∥BC,所以平面MND∥平面BSC,

故DM∥平面SBC.


【解析】(1)根据线面垂直以及线段的垂直平分线的性质证明即可;(2)由线线平行到面面平行从而推出线面平行即可.
【考点精析】利用直线与平面平行的判定对题目进行判断即可得到答案,需要熟知平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图C,D是以AB为直径的圆上的两点,,F是AB上的一点,且,将圆沿AB折起,使点C在平面ABD的射影E在BD上,已知

1求证:AD平面BCE

(2)求证AD//平面CEF;

(3)求三棱锥A-CFD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,函数f(x)=ax2+bx+c,若x0满足关于x的方程2ax+b=0,则下列选项的命题中为假命题的是(
A.x∈R,f(x)≤f(x0
B.x∈R,f(x)≥f(x0
C.x∈R,f(x)≤f(x0
D.x∈R,f(x)≥f(x0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}满足(1﹣a10085+2016(1﹣a1008)=1,(1﹣a10095+2016(1﹣a1009)=﹣1,数列{an}的前n项和记为Sn , 则(
A.S2016=2016,a1008>a1009
B.S2016=﹣2016,a1008>a1009
C.S2016=2016,a1008<a1009
D.S2016=﹣2016,a1008<a1009

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线C1的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2(1+2sin2θ)=3.
(Ⅰ)写出C1的普通方程和C2的直角坐标方程;
(Ⅱ)直线C1与曲线C2相交于A,B两点,点M(1,0),求||MA|﹣|MB||.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学生会为了调查学生对2018年俄罗斯世界杯的关注是否与性别有关,抽样调查100人,得到如下数据:

不关注

关注

总计

男生

30

15

45

女生

45

10

55

总计

75

25

100

根据表中数据,通过计算统计量K2= ,并参考一下临界数据:

P(K2>k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.83

若由此认为“学生对2018年俄罗斯年世界杯的关注与性别有关”,则此结论出错的概率不超过(
A.0.10
B.0.05
C.0.025
D.0.01

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数.

(1)若函数的最小值为-16,求实数的值;

(2)若函数在区间上是单调减函数,求实数的取值范围;

(3)当时,不等式的解集为,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与圆

(1)若直线与圆相交于两个不同点,求的最小值;

(2)直线上是否存在点,满足经过点有无数对互相垂直的直线,它们分别与圆和圆相交,并且直线被圆所截得的弦长等于直线被圆所截得的弦长?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的导函数为f'(x),且f'(x)<f(x)对任意的x∈R恒成立,则下列不等式均成立的是(
A.f(ln2)<2f(0),f(2)<e2f(0)
B.f(ln2)>2f(0),f(2)>e2f(0)
C.f(ln2)<2f(0),f(2)>e2f(0)
D.f(ln2)>2f(0),f(2)<e2f(0)

查看答案和解析>>

同步练习册答案