精英家教网 > 高中数学 > 题目详情
已知sin(θ-
π
4
)=2cos(θ+
π
4
),则
sin(
π
2
+θ)-3cos(π-θ)
sin(
π
2
-θ)-2sin(π-θ)
=(  )
A、-4
B、-2
C、
4
3
D、-1
考点:两角和与差的余弦函数,运用诱导公式化简求值,两角和与差的正弦函数
专题:三角函数的求值,三角函数的图像与性质
分析:利用两角和与差的三角函数化简已知条件求出sinθ与cosθ的关系,通过诱导公式化简所求表达式,得到结果.
解答: 解:∵sin(θ-
π
4
)=2cos(θ+
π
4
),∴
2
2
sinθ-
2
2
cosθ
=
2
cosθ-
2
sinθ

∴sinθ=cosθ.
sin(
π
2
+θ)-3cos(π-θ)
sin(
π
2
-θ)-2sin(π-θ)
=
cosθ+3cosθ
cosθ-2sinθ
=-4.
故选:A.
点评:本题考查诱导公式以及两角和与差的三角函数的应用,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆锥的母线长为8,底面周长为6π,则它的体积为(  )
A、9
55
π
B、9
55
C、3
55
π
D、3
55

查看答案和解析>>

科目:高中数学 来源: 题型:

1
-1
4-x2
dx=(  )
A、2
3
B、2π
C、
2
3
π+
3
D、
5
4
π+
3

查看答案和解析>>

科目:高中数学 来源: 题型:

三角形ABC中,A,B,C的对边分别为a,b,c,已知下列条件:
①b=3,c=4,B=30°;
②a=5,b=8,A=30°;
③c=6,b=3
3
,B=60°;
④c=9,b=12,C=60°
其中满足上述条件的三角形有两解的是(  )
A、①②B、①④C、①②③D、③④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=1-i,那么|z|=(  )
A、0
B、1
C、
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+1,且g(x)=f[f(x)],G(x)=g(x)-2af(x)
(1)若a=3,求函数G(x)的最小值;
(2)是否存在实数a使得G(x)在(-∞,-1)上为减函数,在(-1,0)为增函数?若存在,求出实数a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
m
=(sinωx+cosωx,
3
cosωx),
n
=(cosωx-sinωx,2sinωx)(ω>0).若f(x)=
m
n
,且f(x)相邻两对称轴间的距离等于
π
2

(1)求ω的值;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,a=
3
,b+c=3(b>c),f(A)=1,求边b,c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的方程为
x2
a2
+
y2
b2
=1(a>0,b>0),短轴长为2
3
,离心率为
1
2

(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l:y=kx+m(|k|≤
1
2
)与椭圆C相交于A、B两点,以线段OA、OB为邻边作平行四边形OAPB,其中顶点P在椭圆C上,O为坐标原点,求|OP|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F(1,0),直线l:x=-1,动点P到点F的距离与到直线l的距离相等.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)直线y=
3
x+b与曲线C交于A,B两点,若曲线C上存在点D使得四边形FABD为平行四边形,求b的值.

查看答案和解析>>

同步练习册答案