精英家教网 > 高中数学 > 题目详情

已知椭圆的两个焦点数学公式,且椭圆短轴的两个端点与F2构成正三角形.
(I)求椭圆的方程;
(Ⅱ)过点(1,0)且与坐标轴不平行的直线l与椭圆交于不同两点P、Q,若在x轴上存在定点E(m,0),使数学公式恒为定值,求m的值.

解:(I)由题意可得 c=,tan30°==,∴b=1,∴a=2,
故椭圆的方程为
(Ⅱ) 设直线l的方程为 y-0=k(x-1),即 y=kx-k.
代入椭圆的方程化简可得(1+4k2)x2-8k2x+4k2-4=0,
∴x1+x2=,x1•x2=
=(m-x1,-y1 )•(m-x2,-y2)=(m-x1)(m-x2)+y1y2
=(m2+k2)+(1+k2)x1•x2-(m+k2)(x1+x2
=(m2+k2)+(1+k2-(m+k2)(
= 恒为定值,

∴m=
分析:(I) 由题意得到 c=,tan30°==,可得b、a值,即得椭圆的方程.
(Ⅱ)用点斜式设出直线l的方程,代入椭圆的方程化简,得到根与系数的关系,代入 的解析式化简得
恒为定值,故有 ,从而解出m值.
点评:本题考查椭圆的标准方程,以及椭圆的简单性质的应用,一元二次方程根与系数的关系,由
恒为定值,得到,是解题的关键和难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的两个焦点分别是F1(0,-2
2
),F2(0,2
2
)
,离心率e=
2
2
3

(1)求椭圆的方程;
(2)一条不与坐标轴平行的直线l与椭圆交于不同的两点M,N,且线段MN中点的横坐标为-
1
2
,求直线l的倾斜角的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的两个焦点F1(-
3
,0),F2 (
3
,0)
,且椭圆短轴的两个端点与F2构成正三角形.
(I)求椭圆的方程;
(Ⅱ)过点(1,0)且与坐标轴不平行的直线l与椭圆交于不同两点P、Q,若在x轴上存在定点E(m,0),使
PE
QE
恒为定值,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的两个焦点为F1(-
5
,0)
F2(
5
,0)
,M是椭圆上一点,若
MF1
MF2
=0
|
MF1
|•|
MF2
|=8
,则该椭圆的方程是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的两个焦点是(-3,0),(3,0),且点(0,2)在椭圆上,则椭圆的标准方程是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的两个焦点将长轴三等分,焦点到相应准线的距离为8,则此椭圆的长轴长为
6
6

查看答案和解析>>

同步练习册答案