精英家教网 > 高中数学 > 题目详情
5.以原点O和A(4,2)为两个顶点作等腰三角形OAB,∠OBA=90°,则点B的坐标为(  )
A.(1,3)或(3,-1)B.(-1,3)或(3,1)C.(1,3)或(3,1)D.(1,3)

分析 设B(x,y),利用三角形是等腰直角三角形得到向量$\overrightarrow{OB}$⊥$\overrightarrow{AB}$,C为OA中点得到$\overrightarrow{OC}$⊥$\overrightarrow{BC}$,由此得到关于B的坐标的方程解之.

解答 解:设点B的坐标为(x,y),则$\overrightarrow{OB}$=(x,y),$\overrightarrow{AB}$=(x-4,y-2).
∵∠OBA=90°,即$\overrightarrow{OB}$⊥$\overrightarrow{AB}$,∴$\overrightarrow{OB}•\overrightarrow{AB}$=0,
∴x(x-4)+y(y-2)=0,
即x2+y2-4x-2y=0,①
设OA的中点为C,则点C(2,1),$\overrightarrow{OC}$=(2,1),$\overrightarrow{BC}$=(x-2,y-1),
在等腰三角形AOB中,$\overrightarrow{OC}$⊥$\overrightarrow{BC}$,所以$\overrightarrow{OC}•\overrightarrow{BC}$=0,
∴2(x-2)+y-1=0,即2x+y-5=0,②
解①②得$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$或$\left\{\begin{array}{l}{x=3}\\{y=-1}\end{array}\right.$
故B点坐标为(1,3)或(3,-1);
故选A.

点评 本题考查了利用平面向量的坐标运算、向量垂直求点的坐标;关键是由已知适当设点,利用等腰直角三角形的性质得到向量垂直.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年安徽六安一中高二上理周末检测三数学试卷(解析版) 题型:选择题

在锐角中,的取值范围为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知在棱台ABC-A1B1C1中,V${\;}_{B-{A}_{1}{B}_{1}{C}_{1}}$=4,V${\;}_{{C}_{1}-ABC}$=16,求此棱台的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.用0,1,2,3,4,5共6个数字,可以组成多少个没有重复数字的6位奇数?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设集合A={x|-2<x<-1或x>1},B={x|x2+ax+b≤0},已知A∪B={x|x>-2},A∩B={x|1<x≤3},求实数b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.对于函数y=sin(2x-$\frac{π}{3}$),下列说法正确的是(  )
A.函数的最小正周期为$\frac{π}{2}$B.函数关于($\frac{π}{6}$,0)中心对称
C.函数在-$\frac{π}{12}$处取得最大值D.函数在(-$\frac{π}{12}$,$\frac{π}{6}$)单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设集合A={1,2,3,4},B={1,2,3},x∈A且x∉B,则x=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.两个相关变量满足如下关系:两变量的回归直线方程为(  )
x1015202530
y1 0031 0051 0101 0111 014
A.$\stackrel{∧}{y}$=0.63x-231.2B.$\stackrel{∧}{y}$=0.56x+997.4C.$\stackrel{∧}{y}$=50.2x+501.4D.$\stackrel{∧}{y}$=60.4x+400.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{m}$=(sin$\frac{x}{3}$,-1),$\overrightarrow{n}$=($\frac{\sqrt{3}}{2}$A,$\frac{1}{2}$Acos$\frac{x}{3}$)(A>0),函数f(x)=$\overrightarrow{n}$•$\overrightarrow{m}$的最大值为2.
(1)求f(x)最小正周期和解析式;
(2)设α,β∈[0,$\frac{π}{2}$],f(3α+$\frac{π}{2}$),f(3β+2π)=$\frac{6}{5}$,求sin(α-β)的值.

查看答案和解析>>

同步练习册答案