精英家教网 > 高中数学 > 题目详情

已知函数数学公式,求
(1)函数的周期和最大值;
(2)函数的单调递增区间.

解:(1)∵=3×+sin2x+5×=4+sin2x+cos2x
=2(sin2x+cos2x)+4=2sin(2x+)+4,
∴函数的周期为 =π,当 2x+=2kπ+,k∈z时,函数取得最大值为2+4=6.
(2)令2kπ-≤2x+≤2kπ+,k∈Z,解得 kπ-≤x≤,kπ+,k∈Z,
故函数的单调递增区间为[kπ-,kπ+],k∈Z.
分析:利用二倍角公式,平方关系,两角和的正弦函数,化简函数y=3sin2x+2sinxcosx+5cos2x,为一个角的一个三角函数的形式,然后直接求出最小正周期,最大值,单调增区间.
点评:本题考查三角函数的最值,三角函数的周期性及其求法,正弦函数的单调性,考查计算能力,此类题目的解答,关键是基本的三角函数的性质的掌握熟练程度,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=loga
2m-1-mxx+1
(a>0,a≠1)
是奇函数,定义域为区间D(使表达式有意义的实数x 的集合).
(1)求实数m的值,并写出区间D;
(2)若底数a>1,试判断函数y=f(x)在定义域D内的单调性,并说明理由;
(3)当x∈A=[a,b)(A⊆D,a是底数)时,函数值组成的集合为[1,+∞),求实数a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga
2m-1-mxx+1
(a>0,a≠1)
是奇函数,定义域为区间D(使表达式有意义的实数x 的集合).
(1)求实数m的值,并写出区间D;
(2)若底数a满足0<a<1,试判断函数y=f(x)在定义域D内的单调性,并说明理由;
(3)当x∈A=[a,b)(A⊆D,a是底数)时,函数值组成的集合为[1,+∞),求实数a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1|2x-b|
是偶函数,a为实常数.
(1)求b的值;
(2)当a=1时,是否存在m,n(n>m>0)使得函数y=f(x)在区间[m,n]上的函数值组成的集合也是[m,n],若存在,求出m,n的值,否则,说明理由;
(3)若在函数定义域内总存在区间[m,n](m<n),使得y=f(x)在区间[m,n]上的函数值组成的集合也是[m,n],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1|2x-b|
是偶函数,a为实常数.
(1)求b的值;
(2)当a=1时,是否存在m,n(n>m>o)使得函数y=f(x)在区间[m,n]上的函数值组成的集合也是[m,n],若存在,求出m,n的值,否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出如下命题:
命题p:已知函数y=f(x)=
1-x3
,则|f(a)|<2(其中f(a)表示函数y=f(x)在x=a时的函数值);
命题q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0},且A∩B=∅;
求实数a的取值范围,使命题p,q中有且只有一个为真命题.

查看答案和解析>>

同步练习册答案