精英家教网 > 高中数学 > 题目详情
已知函数 f(x)=
1
2
x2-2alnx+(a-2)x
,a∈R.
(Ⅰ)当 a=1 时,求函数 f(x) 的最小值;
(Ⅱ)当 a≤0 时,讨论函数 f(x) 的单调性;
(Ⅲ)是否存在实数a,对任意的 x1,x2∈(0,+∞),且x1≠x2,有
f(x2)-f(x1)
x2-x1
>a
,恒成立,若存在求出a的取值范围,若不存在,说明理由.
(Ⅰ)由题意,函数f(x)的定义域为(0,+∞),…(1分)
当a=1 时,f′(x)=
x2-x-2
x
=
(x-2)(x+1)
x
…(2分)
∴当x∈(0,2)时,f′(x)<0,x∈(2,+∞),f'(x)>0.
∴f(x)在x=2时取得极小值且为最小值,其最小值为 f(2)=-2ln2…(4分)
(Ⅱ)∵f′(x)=x-
2a
x
+(a-2)=
x2+(a-2)x-2a
x
=
(x-2)(x+a)
x
,…(5分)
∴(1)当-2<a≤0时,若x∈(0,-a)时,f′(x)>0,f(x)为增函数;
x∈(-a,2)时,f′(x)<0,f(x)为减函数;
x∈(2,+∞)时,f′(x)>0,f(x)为增函数.
(2)当a=-2时,x∈(0,+∞)时,f(x)为增函数;
(3)当a<-2时,x∈(0,2)时,f′(x)>0,f(x)为增函数;
x∈(2,-a)时,f′(x)<0,f(x)为减函数;
x∈(-a,+∞)时,f′(x)>0,f(x)为增函数…(9分)
(Ⅲ)假设存在实数a使得对任意的 x1,x2∈(0,+∞),且x1≠x2,有
f(x2)-f(x1)
x2-x1
>a
恒成立,
不妨设0<x1<x2,只要
f(x2)-f(x1)
x2-x1
>a
,即:f(x2)-ax2>f(x1)-ax1
令g(x)=f(x)-ax,只要 g(x)在(0,+∞)为增函数
又函数g(x)=
1
2
x2-2alnx-2x

考查函数g′(x)=x-
2a
x
-2=
x2-2x-2a
x
=
(x-1)2-1-2a
x
…(10分)
要使g'(x)≥0在(0,+∞)恒成立,只要-1-2a≥0,即a≤-
1
2
,…(12分)
故存在实数a∈(-∞,-
1
2
]
时,对任意的 x1,x2∈(0,+∞),且x1≠x2,有
f(x2)-f(x1)
x2-x1
>a
恒成立,…(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案