精英家教网 > 高中数学 > 题目详情
(本小题共13分)
已知正方形ABCD的边长为1,.将正方形ABCD沿对角线折起,使,得到三棱锥ABCD,如图所示.
(I)若点M是棱AB的中点,求证:OM∥平面ACD
(II)求证:
(III)求二面角的余弦值.

(1)略
(2)略
(3)
解:(I)在正方形ABCD中,是对角线的交点,
OBD的中点,                                             ---------------------1分
MAB的中点,
 OMAD.                                                  ---------------------2分
AD平面ACDOM平面ACD,                             ---------------------3分
OM∥平面ACD.                                             ---------------------4分
(II)证明:在中,,              ---------------------5分
.                         ---------------------6分
 是正方形ABCD的对角线,
,                                               --------------------7分
.                           --------------------8分
(III)由(II)知,则OCOAOD两两互相垂直,如图,以O为原点,建立
空间直角坐标系.
,               
是平面的一个法向量.                     --------------------9分
,                      
设平面的法向量,则.
,                              --------------------11分
所以,解得.
--------------------12分
从而,二面角的余弦值为..
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(14 分)如图(1)是一正方体的表面展开图,MN 和PB 是两条面对角线,请在图(2)的正方体中将MN 和PB 画出来,并就这个正方体解决下面问题。

(1)求证:MN//平面PBD;
(2)求证:AQ⊥平面PBD;
(3)求二面角P—DB—M 的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
  已知:如图,长方体中,分别是棱,上的点,,.
  (1) 求异面直线所成角的余弦值;
  (2) 证明平面
  (3) 求二面角的正弦值.
                  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,正方形ADEF和等腰梯形ABCD垂直,已知BC=2AD=4,
(I)求证:面ABF;
(II)求异面直线BE与AC所成的角的余弦值;
(III)在线段BE上是否存在一点P,使得平面平面BCEF?若存在,求出 的值,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在矩形ABCD中,AB=2,BC=a,又PA⊥平面ABCD,PA=4.     
(Ⅰ)若在边BC上存在一点Q,使PQ⊥QD,求a的取值范围;
(Ⅱ)当边BC上存在唯一点Q,使PQ⊥QD时,求二面角A-PD-Q的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如下图所示,正方体ABCD-A1B1C1D1的棱长为1,若E、F分别是BC、DD1中点,则B1到平面ABF的距离为 (  )
(A)                 (B)                     
(C)                 (D)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)
如图5,在底面为直角梯形的四棱锥中,

(1)求证:
(2)求直线
(3)设点E在棱PC上,,若,求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知三棱柱中,三个侧面均为矩形,底面为等腰直角三角形, ,点为棱的中点,点在棱上运动.

(1)求证
(II)当点运动到某一位置时,恰好使二面角的平面角的余弦值为,求点到平面的距离;
(III)在(II)的条件下,试确定线段上是否存在一点,使得平面?若存在,确定其位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在直三棱柱ABC-A1B1C1中∠ACB=90°, AA1="2," AC=BC=1,则异面直线A1B与AC所成角的余弦值是           

查看答案和解析>>

同步练习册答案