精英家教网 > 高中数学 > 题目详情
已知四棱锥中,侧棱都相等,底面是边长为的正方形,底面中心为,以为直径的球经过侧棱中点,则该球的体积为(   )
A.B.C.D.
C

试题分析:如图,G为侧棱PB的中点,结合题意得,所以,又因为,所以,球的半径为1,其体积为。故选C。

点评:求几何体的表面积和体积是常考知识点,我们要知道柱体、锥体和球的表面积公式和体积公式。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

是三条不同的直线, 是三个不同的平面,
①若都垂直,则    
②若,则
③若,则   
④若与平面所成的角相等,则
上述命题中的真命题是__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四边形ABCD中,AC平分∠DAB,∠ABC=60°,AC=6,AD=5,S△ADC,求AB的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知在正方体分别是的中点,在棱上,且

(1)求证:; (2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图四棱锥E—ABCD中,底面ABCD是平行四边形。∠ABC=45°,BE=BC=   EA=EC=6,M为EC中点,平面BCE⊥平面ACE,AE⊥EB

(I)求证:AE⊥BC (II)求四棱锥E—ABCD体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在中,,延长,连接,若,且,则________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱锥P-ABC中,PC平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD平面PAB

(1)求证:AB平面PCB;
(2)求异面直线AP与BC所成角的大小;
(3)求二面角C-PA-B 的大小的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正方体中,MN分别是棱CD1CC1的中点,则异面直线MA1DN所成角的余弦值是            .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,中,侧棱与底面垂直,,,点分别为的中点.

(1)证明:;
(2)求二面角的正弦值.

查看答案和解析>>

同步练习册答案