精英家教网 > 高中数学 > 题目详情

“三角形有一个内角为”是“三内角成等差数列”的(     )

A.充分不必要条件                        B.必要不充分条件

C.充要条件                             D.既不充分也不必要条件

 

【答案】

C

【解析】

试题分析:根据题意,当条件成立时,则可知该角不是最大角时毕竟为等边三角形,如果该角是最小角,三角形也是等边三角形,满足题,当该角不是最大角和最小角时,毕竟满足内角和定理,另外两个角的和为120度,构成了等差数列。反之也成立,故是充要条件。选C.

考点:等差数列

点评:本试题考查了充分条件以及等差数列的概念的运用,属于基础题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2005•上海模拟)(1)若直角三角形两直角边长之和为12,求其周长p的最小值;
(2)若三角形有一个内角为arccos
7
9
,周长为定值p,求面积S的最大值;
(3)为了研究边长a、b、c满足9≥a≥8≥b≥4≥c≥3的三角形其面积是否存在最大值,现有解法如下:S=
1
2
absinC≤
1
2
×9×8sinC=36sinC
,要使S的值最大,则应使sinC最大,即使∠C最大,也就是使∠C所对的边c边长最大,所以,当a?9,b?8,c?4时该三角形面积最大,此时cosC=
43
48
sinC=
455
48
,所以,该三角形面积的最大值是
3
455
4
.以上解答是否正确?若不正确,请你给出正确的解答.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•上海模拟)(1)若直角三角形两直角边长之和为12,求其周长p的最小值;
(2)若三角形有一个内角为arccos
79
,周长为定值p,求面积S的最大值;
(3)为了研究边长a,b,c满足9≥a≥8≥b≥4≥c≥3的三角形其面积是否存在最大值,现有解法如下:16S2=(a+b+c)(a+b-c)(a-b+c)(-a+b+c)=[(a+b)2-c2][c2-(a-b)2]=-c4+2(a2+b2)c2-(a2-b22=-[c2-(a2+b2)]2+4a2b2
而-[c2-(a2+b2)]2≤0,a2≤81,b2≤64,则S≤36,但是,其中等号成立的条件是c2=a2+b2,a=9,b=8,于是c2=145与3≤c≤4矛盾,所以,此三角形的面积不存在最大值.
以上解答是否正确?若不正确,请你给出正确的答案.
(注:16S2=(a+b+c)(a+b-c)(a-b+c)(-a+b+c)称为三角形面积的海伦公式,它已经被证明是正确的)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

(1)若直角三角形两直角边长之和为12,求其周长p的最小值;
(2)若三角形有一个内角为arccos
7
9
,周长为定值p,求面积S的最大值;
(3)为了研究边长a、b、c满足9≥a≥8≥b≥4≥c≥3的三角形其面积是否存在最大值,现有解法如下:S=
1
2
absinC≤
1
2
×9×8sinC=36sinC
,要使S的值最大,则应使sinC最大,即使∠C最大,也就是使∠C所对的边c边长最大,所以,当a?9,b?8,c?4时该三角形面积最大,此时cosC=
43
48
sinC=
455
48
,所以,该三角形面积的最大值是
3
455
4
.以上解答是否正确?若不正确,请你给出正确的解答.

查看答案和解析>>

科目:高中数学 来源:2004-2005学年上海市十校高三联考数学试卷(文科)(解析版) 题型:解答题

(1)若直角三角形两直角边长之和为12,求其周长p的最小值;
(2)若三角形有一个内角为,周长为定值p,求面积S的最大值;
(3)为了研究边长a、b、c满足9≥a≥8≥b≥4≥c≥3的三角形其面积是否存在最大值,现有解法如下:,要使S的值最大,则应使sinC最大,即使∠C最大,也就是使∠C所对的边c边长最大,所以,当a?9,b?8,c?4时该三角形面积最大,此时,所以,该三角形面积的最大值是.以上解答是否正确?若不正确,请你给出正确的解答.

查看答案和解析>>

同步练习册答案