精英家教网 > 高中数学 > 题目详情
20.设f(x)=$\frac{2}{{{2^x}+1}}$+a,x∈R,a为常数.
(1)若f(x)为奇函数,求a;
(2)判断f(x)在R上的单调性,并用单调性的定义予以证明.
(3)在(1)的条件下,不等式f(x2-3x)+f(x-m+1)≤0对x≥0恒成立,求m的取值范围.

分析 (1)直接利用奇函数的定义取值计算,取f(0)=0;
(2)利用函数单调性的定义直接证明;
(3)利用函数的奇偶性与单调性直接得到不等式x2-3x≥-x+m-1对x≥0恒成立.

解答 解:(1)法一:由函数f(x)为奇函数,得f(0)=0即a+1=0,所以a=-1.
法二:因为函数f(x)为奇函数,所以f(-x)=-f(x)即f(-x)+f(x)=0.
∴f(-x)+f(x)=$(a+\frac{2}{{2}^{-x}+1})$+$(a+\frac{2}{{2}^{x}+1})$
=2a+$(\frac{2}{\frac{1}{{2}^{x}}+1}+\frac{2}{{2}^{x}+1})$
=$a+(\frac{2•{2}^{x}}{1+{2}^{x}}+\frac{2}{{2}^{x}+1})$
=2a+2
=0
所以a=-1.
(2)证明:任取x1,x2∈R,且x1<x2
则有f(x1)-f(x2)=$(a+\frac{2}{{2}^{{x}_{1}}+1})$-$(a+\frac{2}{{2}^{{x}_{2}}+1})$
=$\frac{2×({2}^{{x}_{2}}-{2}^{{x}_{1}})}{({2}^{{x}_{1}}+1)({2}^{{x}_{2}}+1)}$;
∵x1<x2
∴${2^{x_1}}-{2^{x_2}}<0$,
∴${2^{x_2}}+1>0$,
∴${2^{x_1}}+1>0$,f(x1)-f(x2)>0,即f(x1)>f(x2).
所以,对任意的实数a,函数f(x)在f(x2-3x)+f(x-m+1)≤0上是减函数.
(3)由(1)得,f(x)为奇函数,则有不等式f(x2-3x)+f(x-m+1)≤0对x≥0恒成立等价于不等式f(x2-3x)≤f(-x+m-1)对x≥0恒成立,
又由(2)知,对任意的实数a,函数f(x)在(-∞,+∞)上是减函数.
则?式等价于不等式x2-3x≥-x+m-1对x≥0恒成立,
即不等式m≤x2-2x+1对x≥0恒成立,
令g(x)=x2-2x+1,则g(x)=(x-1)2,易知∴g(x)min=g(1)=0
∴m≤0.

点评 本题考查了函数的奇偶性、单调性定义证明、以及函数性质的综合应用,属中等题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.如图:在屋内墙角处堆放米(米堆为一个圆锥的四分之一),米堆底部的弧长为4米,高为2米,则该米堆的体积为$\frac{32}{3π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知四面体ABCD中,AB=AC,BD=CD,平面ABC⊥平面BCD,E,F分别为棱BC和AD的中点.
(Ⅰ)求证:AE⊥平面BCD;
(Ⅱ)求证:AD⊥BC;
(Ⅲ)点G在棱AB上,且满足FG∥平面BCD,求点G在棱AB上的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若$sinx+cosx=\frac{1}{3}$,x∈(0,π),则sinx-cosx的值为$\frac{\sqrt{17}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某市一次全市高中男生身高统计调查数据显示:全市100 000名男生的身高服从正态分布N(168,16).现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160cm和184cm之间,将测量结果按如下方式分成6组:第一组[160,164],第二组[164,168],组方法得到的频率分布直方图.
(Ⅰ)试评估该校高三年级男生在全市高中男生中的平均身高状况;
(Ⅱ)求这50名男生身高在172cm以上(含172cm)的人数;
(Ⅲ)在这50名男生身高在172cm以上(含172cm)的人中任意抽取2人,该2人中身高排名(从高到低)在全市前130名的人数记为ξ,求ξ的数学期望.
参考数据:
若ξ-N(μ+σ2).则
p(μ-σ<ξ≤μ+σ)=0.6826,
p(μ-2σ<ξ≤μ+2σ)=0.9544,
p(μ-3σ<ξ≤μ+3σ)=0.9974.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.长为2$\sqrt{3}$的线段EF的端点E,F分别在直线y=$\frac{{\sqrt{3}}}{3}$x和y=-$\frac{{\sqrt{3}}}{3}$x上滑动,P是线段EF的中点.
(Ⅰ)求点P的轨迹M的方程;
(Ⅱ)设直线l:x=ky+m与轨迹M交于A,B两点,若以AB为直径的圆经过定点C(3,0)(C点与A,B点不重合),求证:直线l经过定点Q,并求出Q点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=2ax3-x2+$\frac{1}{27}$,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是(  )
A.(-1,1)B.(1,+∞)C.(1,+∞)∪(-∞,-1)D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在同一坐标系中,将曲线y=sinx变为曲线y'=2sin3x'的伸缩变换是(  )
A.$\left\{\begin{array}{l}x'=\frac{1}{3}x\\ y'=\frac{1}{2}y\end{array}\right.$B.$\left\{\begin{array}{l}x'=\frac{1}{3}x\\ y'=2y\end{array}\right.$C.$\left\{\begin{array}{l}x'=3x\\ y'=\frac{1}{2}y\end{array}\right.$D.$\left\{\begin{array}{l}x'=3x\\ y'=2y\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.有一个几何体的三视图如图所示,它的外接球的体积为$\frac{64\sqrt{2}π}{3}$.

查看答案和解析>>

同步练习册答案