精英家教网 > 高中数学 > 题目详情
10.有一个几何体的三视图如图所示,它的外接球的体积为$\frac{64\sqrt{2}π}{3}$.

分析 由三视图可知该几何体为四棱锥,由三视图求出几何元素的长度、判断出位置关系,利用对应的三棱柱确定外接球球心的位置,并求出球的半径,利用球的体积积公式求解.

解答 解:由三视图知该几何体为如图所示的四棱锥P-ABCD,
且PE⊥平面ABC,E、F、O分别是对应边的中点,底面ABCD是边长是4的正方形,
∵AE=ED=PE=2,∴PA⊥PD,则E是△PAD外接圆的圆心,
由图可得,四棱锥P-ABCD的外接球是直三棱柱的外接球,
∴外接球的球心是O,则OP=OC=OA=OB=OD=2$\sqrt{2}$,
∴几何体的外接球的体积S=$\frac{4}{3}π{R}^{3}$=$\frac{4}{3}$π×$(2\sqrt{2})^{3}$=$\frac{64\sqrt{2}π}{3}$.
故答案为:$\frac{64\sqrt{2}π}{3}$.

点评 本题考查了四棱锥与三棱柱的外接球的性质及其体积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设f(x)=$\frac{2}{{{2^x}+1}}$+a,x∈R,a为常数.
(1)若f(x)为奇函数,求a;
(2)判断f(x)在R上的单调性,并用单调性的定义予以证明.
(3)在(1)的条件下,不等式f(x2-3x)+f(x-m+1)≤0对x≥0恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知Sn是等差数列{an}的前n项和,若4S6+3S8=96,则S7=(  )
A.48B.24C.14D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,已知sinC=$\frac{sinA+sinB}{cosA+cosB}$,试判断三角形的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知a,b∈Z,“若a,b都是奇数,则a+b是偶数”的逆否命题是“若a+b不是偶数,则a,b不都是奇数”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,A,B是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个顶点,|AB|=$\sqrt{5}$,直线AB的斜率为-$\frac{1}{2}$,M是椭圆C长轴上的一个动点,设点M(m,0).
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l:x=-2y+m与与x,y轴分别交于点M,N,与椭圆相交于C,D.证明:△OCM的面积等于△ODN的面积.
(3)在(Ⅱ)的条件下证明:|CM|2+|MD|2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.对于一组数据的两个函数模型,其残差平方和分别为152.6 和169.8,若从中选取一个拟合程度较好的函数模型,应选残差平方和为152.6的那个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.阅读如图所示的程序框图,输出的结果S的值为(  )
A.0B.$\frac{{\sqrt{3}}}{2}$C.$\sqrt{3}$D.-$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列有关命题的说法中错误的是(  )
A.命题:“若y=f(x)是幂函数,则y=f(x)的图象不经过第四象限”的否命题是假命题
B.设a,b∈R,则“a>b”是“a|a|>b|b|”的充要条件
C.命题“?n∈N*,f(n)∈N*且f(n)≤n”的否定形式是“?n0∈N*,f(n0)∉N*且f(n0)≥n0
D.若p∨q为假命题,则p,q均为假命题

查看答案和解析>>

同步练习册答案