·ÖÎö £¨¢ñ£©ÀûÓÃ|AB|=$\sqrt{5}$£¬Ö±ÏßABµÄбÂÊΪ-$\frac{1}{2}$£¬½¨Á¢·½³Ì×飬¼´¿ÉÇóÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©Éè³öÖ±Ïß·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí¼°Èý½ÇÐεÄÃæ»ý¹«Ê½£¬¼´¿ÉÖ¤µÃ½áÂÛ£»
£¨¢ó£©ÓÉ£¨¢ò£©Ö±½ÓÀûÓÃÁ½µã¼äµÄ¾àÀ빫ʽ½áºÏ¸ùÓëϵÊýµÄ¹ØÏµÖ¤Ã÷£®
½â´ð £¨¢ñ£©½â£º¡ßA¡¢BÊÇÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÁ½¸ö¶¥µã£¬ÇÒ|AB|=$\sqrt{5}$£¬Ö±ÏßABµÄбÂÊΪ-$\frac{1}{2}$£¬
ÓÉA£¨a£¬0£©£¬B£¨0£¬b£©£¬µÃ|AB|=$\sqrt{{a}^{2}+{b}^{2}}=\sqrt{5}$£¬
ÓÖk=$\frac{b-0}{0-a}=-\frac{b}{a}=-\frac{1}{2}$£¬½âµÃa=2£¬b=1£¬
¡àÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}=1$£»
£¨¢ò£©Ö¤Ã÷£ºÖ±ÏßlµÄ·½³ÌΪx=-2y+m£¬¼´y=-$\frac{1}{2}$x+$\frac{m}{2}$£¬½«Æä´úÈë$\frac{{x}^{2}}{4}+{y}^{2}=1$£¬ÏûÈ¥y£¬
ÕûÀíµÃ2x2-2mx+m2-4=0£®
ÉèC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£®
¡àx1+x2=m£¬x1x2=$\frac{1}{2}$m2-2£®
¼Ç¡÷OCMµÄÃæ»ýÊÇS1£¬¡÷ODNµÄÃæ»ýÊÇS2£®
ÓÉÌâÒâM£¨m£¬0£©£¬N£¨0£¬$\frac{m}{2}$£©£¬
¡ßx1+x2=m£¬¡à|2y1|=|2£¨-$\frac{1}{2}$x1+$\frac{m}{2}$£©|=|-x1+m|=|x2|£¬
¡ßS¡÷OCM=$\frac{1}{2}$|m||y1|£¬S¡÷ODN=$\frac{1}{2}$|$\frac{m}{2}$||x2|£®
¡à¡÷OCMµÄÃæ»ýµÈÓÚ¡÷ODNµÄÃæ»ý£»
£¨¢ó£©Ö¤Ã÷£ºÓÉ£¨¢ò£©Öª£¬M£¨m£¬0£©£¬x1+x2=m£¬x1x2=$\frac{1}{2}$m2-2£¬
¡à|CM|2+|MD|2=$£¨{x}_{1}-m£©^{2}+{{y}_{1}}^{2}+£¨{x}_{2}-m£©^{2}+{{y}_{2}}^{2}$=${{x}_{1}}^{2}-2m{x}_{1}+{m}^{2}+£¨-\frac{1}{2}{x}_{1}+\frac{m}{2}£©^{2}$+${{x}_{2}}^{2}-2m{x}_{2}+{m}^{2}+£¨-\frac{1}{2}{x}_{2}+\frac{m}{2}£©^{2}$
=$\frac{5}{4}£¨{x}_{1}+{x}_{2}£©^{2}-\frac{5}{2}{x}_{1}{x}_{2}-\frac{5}{2}m£¨{x}_{1}+{x}_{2}£©+\frac{5}{2}{m}^{2}$=$\frac{5}{4}{m}^{2}-\frac{5}{2}£¨\frac{1}{2}{m}^{2}-2£©-\frac{5}{2}{m}^{2}+\frac{5}{2}{m}^{2}$=5£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | -2¡Üa¡Ü2 | B£® | -2£¼a£¼2 | C£® | 0£¼a£¼2 | D£® | -2£¼a£¼0 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | µÚÒ»ÏóÏÞ | B£® | µÚ¶þÏóÏÞ | C£® | µÚÈýÏóÏÞ | D£® | µÚËÄÏóÏÞ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ${\overline{x}}_{¼×}$£¾${\overline{x}}_{ÒÒ}$£¬$\overline{{S}_{¼×}}$£¾$\overline{{S}_{ÒÒ}}$ | B£® | ${\overline{x}}_{¼×}$£¾${\overline{x}}_{ÒÒ}$£¬$\overline{{S}_{¼×}}$£¼$\overline{{S}_{ÒÒ}}$ | ||
| C£® | ${\overline{x}}_{¼×}$£¼${\overline{x}}_{ÒÒ}$£¬$\overline{{S}_{¼×}}$£¾$\overline{{S}_{ÒÒ}}$ | D£® | ${\overline{x}}_{¼×}$£¼${\overline{x}}_{ÒÒ}$£¬$\overline{{S}_{¼×}}$£¼$\overline{{S}_{ÒÒ}}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com