精英家教网 > 高中数学 > 题目详情
20.x-2y=2变成直线2x′-y′=4的伸缩变换为$\begin{array}{l}\left\{\begin{array}{l}{x^'}=x\\{y^'}=4y\end{array}\right.\end{array}$.

分析 将直线x-2y=2变成直线2x′-y′=4即直线x′-$\frac{1}{2}$y′=2,横坐标不变,纵坐标变为原来的4倍,即可得出结论.

解答 解:直线2x′-y′=4即直线x′-$\frac{1}{2}$y′=2.
将直线x-2y=2变成直线2x′-y′=4即直线x′-$\frac{1}{2}$y′=2,
故变换时横坐标不变,纵坐标变为原来的4倍,
即有伸缩变换$\begin{array}{l}\left\{\begin{array}{l}{x^'}=x\\{y^'}=4y\end{array}\right.\end{array}$.
故答案为$\begin{array}{l}\left\{\begin{array}{l}{x^'}=x\\{y^'}=4y\end{array}\right.\end{array}$.

点评 本题考查函数的图象变换,判断横坐标不变,纵坐标变为原来的4倍,是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=aln(x+1)-x2在(0,2)内任取两个实数m,n,且m≠n,不等式$\frac{f(m+1)-f(n+1)}{m-n}$>1恒成立,则实数a的取值范围是(  )
A.[6,+∞)B.[15,28]C.[15,+∞)D.[28,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.钝角△ABC中,(2sinC-1)•sin2A=sin2C-sin2B,则sin(A-B)=(  )
A.0B.$\frac{1}{2}$C.-$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.有4对夫妻进行一种游戏,每个女士送一件礼物给某个男士,规定任何士都不能收自己妻子的礼物,且每个男士只能收一件礼物.则不同的送礼方式共有(  )种.
A.10B.24C.9D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,A,B是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个顶点,|AB|=$\sqrt{5}$,直线AB的斜率为-$\frac{1}{2}$,M是椭圆C长轴上的一个动点,设点M(m,0).
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l:x=-2y+m与与x,y轴分别交于点M,N,与椭圆相交于C,D.证明:△OCM的面积等于△ODN的面积.
(3)在(Ⅱ)的条件下证明:|CM|2+|MD|2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设集合M={(x,y)|y=$\sqrt{16-{x}^{2}}$,y≠0},N={(x,y)|y=x+a},若中M∩N有两个元素,则实数a的取值范围为(4,4$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且到原点的距离为2$\sqrt{3}$.
(Ⅰ)求抛物线E的方程;
(Ⅱ)已知点G(-1,0),延长AF交抛物线E于点B,证明:以点F为圆心且与直线GA相切的圆,必与直线GB相切.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,四棱锥P-ABCD的底面ABCD是菱形,∠BCD=60°,PA⊥面ABCD,E 是AB的中点,F是PC的中点.
(Ⅰ)求证:DE⊥面PAB
(Ⅱ)求证:BF∥面PDE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知命题p:直线x+y-a=0与圆(x-1)2+y2=1有公共点,命题q:直线y=ax+2的倾斜角不大于45°,若命题p∧q为假命题,p∨q为真命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案