| A. | 0 | B. | $\frac{1}{2}$ | C. | -$\frac{1}{2}$ | D. | 1 |
分析 由已知及正弦定理,余弦定理整理可得ccosB=asinC,又由正弦定理解得sin($\frac{π}{2}$-B)=sinA,可得$\frac{π}{2}$-B=A,或$\frac{π}{2}$-B+A=π,分类讨论可求A-B=$\frac{π}{2}$,利用特殊角的三角函数值即可求值得解.
解答 解:∵(2sinC-1)•sin2A=sin2C-sin2B,
∴由正弦定理可得:2sinC=$\frac{{c}^{2}-{b}^{2}}{{a}^{2}}$+1=$\frac{{c}^{2}+{a}^{2}-{b}^{2}}{{a}^{2}}$,
∴由余弦定理可得:2a2sinC=2accosB,可得:ccosB=asinC,
又∵由正弦定理可得:asinC=csinA,可得:ccosB=csinA,解得:cosB=sinA,即:sin($\frac{π}{2}$-B)=sinA,
∴$\frac{π}{2}$-B=A,或$\frac{π}{2}$-B+A=π,
∵当$\frac{π}{2}$-B=A时,可得:$\frac{π}{2}$=B+A,C=π-(A+B)=$\frac{π}{2}$,三角形为直角三角形,与已知矛盾;
∴$\frac{π}{2}$-B+A=π,即:A-B=$\frac{π}{2}$,
∴sin(A-B)=1.
故选:D.
点评 本题主要考查了正弦定理,余弦定理,特殊角的三角函数值在解三角形中的综合应用,考查了转化思想和分类讨论思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | c>b>a |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{5}-2\sqrt{15}}}{10}$ | B. | $\frac{{\sqrt{5}+2\sqrt{15}}}{10}$ | C. | $\frac{{\sqrt{15}+2\sqrt{5}}}{10}$ | D. | $\frac{{\sqrt{15}-2\sqrt{5}}}{10}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com