精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=$\frac{{2{e^x}}}{x}$.
(1)若曲线y=f(x)在点(x0,f(x0))处的切线方程为ax-y=0,求x0的值;
(2)当x>0时,求证:f(x)>2x.

分析 (1)求出函数的导数,结合切线方程求出x0的值即可;(2)构造函数g(x),根据函数的单调性求出g(x)的最小值,从而证出结论.

解答 解:(1)${f^,}(x)=2×\frac{{{e^x}x-{e^x}}}{x^2}$,因为切线ax-y=0过原点,
所以$\frac{{{e^{x_0}}{x_0}-{e^{x_0}}}}{{{x_0}^2}}=\frac{{\frac{{{e^{x_0}}}}{x_0}}}{x_0}$,解得:x0=2;
证明:(2)$设g(x)=\frac{f(x)}{2x}=\frac{e^x}{x^2}(x>0),则{g^,}(x)=\frac{{{e^x}({{x^2}-2x})}}{x^4}$,$令{g^,}(x)=\frac{{{e^x}({{x^2}-2x})}}{x^4}=0$,解得x=2.
x在(0,+∞)上变化时,g,(x),g(x)的变化情况如下表:

x(0,2)2(2,+∞)
g,(x)-0+
g(x)递减$\frac{e^2}{4}$递增
所以,当x=2时,g(x)取得最小值$\frac{e^2}{4}$,
所以,当x>0时,$g(x)≥\frac{e^2}{4}>1,即f(x)>2x$.

点评 本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用以及不等式的证明,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.设x,y满足约束条件$\left\{{\begin{array}{l}{x+y≥3}\\{x-y≥-1}\\{2x-y≤3}\end{array}}$,则z=x+4y的最大值为24.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)的定义域为R,且对于?x∈R,都有f(-x)=f(x)成立.
(1)若x≥0时,f(x)=(${\frac{1}{2}}$)x,求不等式f(x)>$\frac{1}{4}$的解集;
(2)若f(x+1)是偶函数,且当x∈[0,1]时,f(x)=2x,求f(x)在区间[2015,2016]上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=aln(x+1)-x2在(0,2)内任取两个实数m,n,且m≠n,不等式$\frac{f(m+1)-f(n+1)}{m-n}$>1恒成立,则实数a的取值范围是(  )
A.[6,+∞)B.[15,28]C.[15,+∞)D.[28,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若sin(75°+α)=$\frac{1}{3}$,则cos(30°-2α)的值为(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.$\frac{7}{9}$D.-$\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆C:x2+y2-4x-2y-20=0及直线l:mx-y-m+3=0(m∈R).
(1)证明:不论m取什么实数,直线l与圆C总相交;
(2)求直线l被圆C截得的弦长的最小值及此时的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若关于x的方程$\sqrt{3}$sinx+cosx=2a-1有解,则实数a的取值范围为-$\frac{1}{2}$≤a≤$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.钝角△ABC中,(2sinC-1)•sin2A=sin2C-sin2B,则sin(A-B)=(  )
A.0B.$\frac{1}{2}$C.-$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且到原点的距离为2$\sqrt{3}$.
(Ⅰ)求抛物线E的方程;
(Ⅱ)已知点G(-1,0),延长AF交抛物线E于点B,证明:以点F为圆心且与直线GA相切的圆,必与直线GB相切.

查看答案和解析>>

同步练习册答案