精英家教网 > 高中数学 > 题目详情
12.设x,y满足约束条件$\left\{{\begin{array}{l}{x+y≥3}\\{x-y≥-1}\\{2x-y≤3}\end{array}}$,则z=x+4y的最大值为24.

分析 作出不等式对应的平面区域,利用线性规划的知识,利用z的几何意义即可得到结论..

解答 解:作出不等式组对应的平面区域如图:
由z=x+4y得y=-$\frac{1}{4}$x+$\frac{1}{4}$z,
平移直线y=-$\frac{1}{4}$x+$\frac{1}{4}$z,
由图象可知当直线y=-$\frac{1}{4}$x+$\frac{1}{4}$z经过点A时,
直线的截距最大,此时z最大.
由$\left\{\begin{array}{l}{x-y=-1}\\{2x-y=3}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=5}\end{array}\right.$,
即A(4,5),此时zmax=4+4×5=24,
故答案为:24.

点评 本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知$sin(\frac{π}{2}+α)=\frac{1}{3}$,α为锐角,则sin(π+α)的值为(  )
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$±\frac{{2\sqrt{2}}}{3}$D.$-\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.直线y=x的倾斜角和斜率分别是(  )
A.45°,1B.135°,-1C.90°,不存在D.180°,不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}中,an=2an-1+n(n≥2,n∈N).
(1){an}是否可能为等比数列?若可能,求出此等比数列的通项公式;若不可能,说明理由;
(2)设bn=(-1)n(an+n+2),Sn为数列{bn}的前n项和,且对于任意的n∈N*,n≤10,都有Sn<1,求a1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知A(0,2,3),B(-2,1,6),C(1,-1,5)
(1)求平面ABC的一个法向量;
(2)证明:向量$\overrightarrow a=(3,-4,1)$与平面ABC平行.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若a>b>0,则不正确的是(  )
A.ab>b2B.($\frac{1}{2}$)a<($\frac{1}{2}$)b
C.log${\;}_{\frac{1}{2}}$a>log${\;}_{\frac{1}{2}}$bD.a2>b2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)已知α是第三象限角,且$tanα=\frac{1}{3}$,求sinα,cosα的值.
(2)已知角α的终边上有一点P的坐标是(3a,4a),其中a≠0,求sinα,cosα,tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知$a={log_2}9-{log_2}\sqrt{3},b=1+{log_2}\sqrt{7},c=\frac{1}{2}+{log_2}\sqrt{13}$,则(  )
A.a>b>cB.b>a>cC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{{2{e^x}}}{x}$.
(1)若曲线y=f(x)在点(x0,f(x0))处的切线方程为ax-y=0,求x0的值;
(2)当x>0时,求证:f(x)>2x.

查看答案和解析>>

同步练习册答案