精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)的定义域为R,且对于?x∈R,都有f(-x)=f(x)成立.
(1)若x≥0时,f(x)=(${\frac{1}{2}}$)x,求不等式f(x)>$\frac{1}{4}$的解集;
(2)若f(x+1)是偶函数,且当x∈[0,1]时,f(x)=2x,求f(x)在区间[2015,2016]上的解析式.

分析 (1)由题意求出f(x)在定义域为R上的解析式,再求解f(x)>$\frac{1}{4}$的解集;
(2)由f(x+1)是偶函数,可得f(x)是周期为1的函数.当x∈[0,1]时,f(x)=2x,可以得出f(x)在区间[2015,2016]上的解析式.

解答 解:由题意:函数f(x)的定义域为R,且对于?x∈R,都有f(-x)=f(x)成立.
∴f(x)是偶函数.
(1)当x≥0时,f(x)=(${\frac{1}{2}}$)x
那么:x<0时,则-x>0,
f(-x)=(${\frac{1}{2}}$)-x
∵f(-x)=f(x),
故得x<0时,f(x)=(${\frac{1}{2}}$)-x
∴f(x)在定义域为R上的解析式f(x)=$(\frac{1}{2})^{|x|}$,
不等式f(x)>$\frac{1}{4}$转化为:$(\frac{1}{2})^{|x|}>(\frac{1}{2})^{2}$,
∴|x|<2,
解得:-2<x<2,
∴不等式f(x)>$\frac{1}{4}$的解集为{x|-2<x<2}.
(2)由f(x+1)是偶函数,可得f(x)是周期为1的函数.即f(x+1)=f(x),当x∈[0,1]时,f(x)=2x
∵x∈[2015,2016]上,
那么:x-2015∈[0,1]上;
∴f(x)=2x-2015
故得f(x)在区间[2015,2016]上的解析式f(x)=2x-2015

点评 本题考查了函数的奇偶性的运用和周期函数解析式的求法.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.直线y=x的倾斜角和斜率分别是(  )
A.45°,1B.135°,-1C.90°,不存在D.180°,不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)已知α是第三象限角,且$tanα=\frac{1}{3}$,求sinα,cosα的值.
(2)已知角α的终边上有一点P的坐标是(3a,4a),其中a≠0,求sinα,cosα,tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知$a={log_2}9-{log_2}\sqrt{3},b=1+{log_2}\sqrt{7},c=\frac{1}{2}+{log_2}\sqrt{13}$,则(  )
A.a>b>cB.b>a>cC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若$sinx+cosx=\frac{1}{3}$,x∈(0,π),则sinx-cosx的值为$\frac{\sqrt{17}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合U=R,A={x|-4≤x≤2},B={x|-1<x≤3},则A∩B=(  )
A.{x|-4≤x≤2或-1<x≤3}B.{x|-1<x≤2}C.{x|-1≤x≤2}D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.长为2$\sqrt{3}$的线段EF的端点E,F分别在直线y=$\frac{{\sqrt{3}}}{3}$x和y=-$\frac{{\sqrt{3}}}{3}$x上滑动,P是线段EF的中点.
(Ⅰ)求点P的轨迹M的方程;
(Ⅱ)设直线l:x=ky+m与轨迹M交于A,B两点,若以AB为直径的圆经过定点C(3,0)(C点与A,B点不重合),求证:直线l经过定点Q,并求出Q点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{{2{e^x}}}{x}$.
(1)若曲线y=f(x)在点(x0,f(x0))处的切线方程为ax-y=0,求x0的值;
(2)当x>0时,求证:f(x)>2x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在复平面内复数z满足3+4i=(1-i)z (i 是虚数单位),则复数z 的对应点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案