分析 由命题p∧q为假命题,p∨q为真命题可知,命题p与命题q有且只有一个为真,分类讨论满足条件的实数a的取值范围,综合讨论结果,可得答案.
解答 解:当p为真命题时
联立直线与圆的方程得:2x2-2(a+1)x+a2=0,
则△=4(a+1)2-8a2≥0,
解得:1-$\sqrt{2}$≤a≤1+$\sqrt{2}$…(3分)
当q为真命题时0≤a≤1…(6分)
由命题p∧q为假命题,p∨q为真命题可知,命题p与命题q有且只有一个为真
当p真q假时,1-$\sqrt{2}$≤a<0,或1<a≤1+$\sqrt{2}$…(9分)
当p假q真时,不存在满足条件的a值.…(11分)
综上所述,1-$\sqrt{2}$≤a<0,或1<a≤1+$\sqrt{2}$…(12分)
点评 本题以命题的真假判断与应用为载体,考查了直线与圆的位置关系,斜率与倾斜解的关系,复合命题,难度不大,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{5}-2\sqrt{15}}}{10}$ | B. | $\frac{{\sqrt{5}+2\sqrt{15}}}{10}$ | C. | $\frac{{\sqrt{15}+2\sqrt{5}}}{10}$ | D. | $\frac{{\sqrt{15}-2\sqrt{5}}}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 有最小值-e | B. | 有最小值e | C. | 有最大值e | D. | 有最大值e+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com