精英家教网 > 高中数学 > 题目详情
△ABC中
(1)已知2B=A+C,b=1,求a+c的范围
(2)已知2asinA=(2b+c)sinB+(2c+b)sinC,且sinB+sinC=1,判断△ABC的形状.
(1)∵△ABC中,2B=A+C,
∴A+B+C=π,即B=
π
3

∵b=1,∴由正弦定理得:2R=
b
sinB
=
1
3
2
=
2
3
3

∵A+C=
3
,即C=
3
-A,
∴a+c=2RsinA+2RsinC=2R(sinA+sinC)=
4
3
3
[sinA+sin(
3
-A)]=
4
3
3
2sin
π
3
cos(A-
π
3
)=4cos(A-
π
3
),
∵0<A<
3
,∴-
π
3
<A-
π
3
π
3

1
2
<cos(A-
π
3
)<1,即2<4cos(A-
π
3
)<4,
则a+c的范围是(2,4);
(2)已知等式利用正弦定理化简得:2a2=b(2b+c)+c(2c+b),即b2+c2-a2=-bc,
∴cosA=
b2+c2-a2
2bc
=
-bc
2bc
=-
1
2

∵A为三角形内角,∴A=120°,即B+C=60°,
∴sinB+sinC=sinB+sin(60°-B)=2sin30°cos(B-30°)=cos(B-30°)=1,
∴B-30°=0,即B=30°,
则△ABC为等腰三角形.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)

本小题满分12分)如图是单位圆上的动点,
是圆与轴正半轴的交点,设
(1)当点的坐标为时,求的值;
(2)若,且当点A、B在圆上沿逆时针方向移动时总有,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC中a=1,b=3,C=60°,则c=(  )
A.
7
B.7C.
13
D.13

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知△ABC中,M是BC的中点,AM=
7
,设内角A,B,C所对边的长分别为a,b,c,且
cosA
cosC
=
3
a
2b-
3
c

(1)求角A的大小;
(2)若角B=
π
6
,求△ABC的面积;
(3)求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

△ABC中,a,b,c分别是角A.B,C的对边,且有sin2C+
3
cos(A+B)=0,若a=4,c=
13
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设a,b,c是三角形ABC的边长,对任意实数x,f(x)=b2x2+(b2+c2-a2)x+c2有(  )
A.f(x)=0B.f(x)>0C.f(x)≥0D.f(x)<0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在△ABC中,如果lga-lgc=lgsinB=-lg
2
并且B为锐角,试判断此三角形的形状特征.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知△ABC的面积S=
1
4
(b2+c2-a2),其中a,b,c分别为角A,B,C所对的边,
(1)求角A的大小;
(2)若a=2,求bc的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC中,a:b:c=3:5:7,则△ABC的最大角的度数为               (   )
A.1200B.1350C.450D.600

查看答案和解析>>

同步练习册答案