精英家教网 > 高中数学 > 题目详情
已知△ABC的面积S=
1
4
(b2+c2-a2),其中a,b,c分别为角A,B,C所对的边,
(1)求角A的大小;
(2)若a=2,求bc的最大值.
(1)∵S=
1
2
bc•sinA cosA=
b2+c2-a2
2bc
即b2+c2-a2=2bc•cosA
∴S=
1
4
(b2+c2-a2)变形得
1
4
×2bc•cosA=
1
2
bc•sinA
∴tanA=1
又0<A<π,
∴A=
π
4

(2)由(1)bc=
2
4
(b2+c2-a2)≥
2
4
(2bc-4)=
2
2
bc-
2

∴(1-
2
2
)bc≤
2

∴bc≤4+2
2

∴bc的最大值为4+2
2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

△ABC中
(1)已知2B=A+C,b=1,求a+c的范围
(2)已知2asinA=(2b+c)sinB+(2c+b)sinC,且sinB+sinC=1,判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知A,B,C分别为△ABC的三边a,b,c所对的角,向量
m
=(sinA,sinB)
n
=(cosB,cosA)
,且
m
n
=sin2C

(1)求角C的大小;
(2)若sinA,sinC,sinB成等差数列,且
CA
CB
=18
,求边c的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A处获悉后,测得该渔轮在北偏东45°、距离为10海里的C处,并测得渔轮正沿南偏东75°的方向、以每小时9海里的速度向附近的小岛靠拢.我海军舰艇立即以每小时21海里的速度沿直线方向前去营救;则舰艇靠近渔轮所需的时间是多少小时?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

△ABC中,角A、B、C的对边分别为a、b、c,已知a2=b2+c2+bc,则角A等于(  )
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

△ABC中,a,b,c分别是∠A,∠B,∠C的对边,若a2+b2=2c2,则cosc的最小值为(  )
A.
3
2
B.
2
2
C.
1
2
D.-
1
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在△ABC中,a,b,c分别是A,B,C的对边,且满足(sinB+sinA+sinC)(sinB+sinC-sinA)=3sinBsinC.求角A.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知△ABC三边满足a2+b2=c2-
3
ab,则此三角形的最大内角为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知等差数列的公差为3,若成等比数列,则=     .

查看答案和解析>>

同步练习册答案