精英家教网 > 高中数学 > 题目详情

若实数数学公式
(1)若a>2,求函数f(x)的单调区间;
(2)若在区间(0,+∞)上存在一点x0,使得f(x0)<1成立,求实数a的取值范围.

解:(1)∵f(x)=+2x+1
…(2分)a>2时,列表如下,

x1(1,+∞)
f'(x)+0-0+
f(x)极大值极小值


单调递减区间是
当0<a<2时,列表如下,

x(-∞,1)1
f'(x)+0-0+
f(x)极大值极小值


单调递减区间是
(2)因为f(0)=1,由(1)知要使在区间(0,+∞)上至少存在一点x0,使得f(x0)<1成立,只需在区间(0,+∞)上f(x)极小值<1即可.
当a>2时,f(x)极小值=f(1)=2-<1,所以a>6.

综上所述,实数


分析:(1)求出函数的导数,通过a>2,列出导函数的值的符号,确定函数f(x)的单调区间;
(2)通过f(0)=1,利用(1)要使在区间(0,+∞)上至少存在一点x0,使得f(x0)<1成立,只需在区间(0,+∞)上f(x)极小值<1,即可求实数a的取值范围.
点评:本题是中档题,考查函数的导数,函数的单调性的应用,考查转化思想计算能力,同时注意分类讨论思想.近几年高考必考内容.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知两个不共线的向量
a
b
,它们的夹角为θ,且|
a
|=3
|
b
|=1
,x为正实数.
(1)若
a
+2
b
a
-4
b
垂直,求tanθ;
(2)若θ=
π
6
,求|x
a
-
b
|
的最小值及对应的x的值,并判断此时向量
a
x
a
-
b
是否垂直?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+
2
x
+alnx,(a∈R)

(1)若a=-4,求函数f(x)的单调性;
(2)若函数f(x)在[1,+∞)上单调递增,求实数a的取值范围;
(3)记函数g(x)=x2f′(x),若g(x)的最小值是-
5
2
,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项a1=a,公差为2的等差数列,数列{bn}满足2bn=(n+1)an
(1)若a1、a3、a4成等比数列,求数列{an}的通项公式;
(2)若对任意n∈N*都有bn≥b5成立,求实数a的取值范围;
(3)数列{cn}满足 cn+1-cn=(
12
)n(n∈N*)
,其中c1=1,f(n)=bn+cn,当a=-20时,求f(n)的最小值(n∈N*).

查看答案和解析>>

科目:高中数学 来源:2007年甘肃省天水一中高考数学三模试卷(文科)(解析版) 题型:解答题

若实数
(1)若a>2,求函数f(x)的单调区间;
(2)若在区间(0,+∞)上存在一点x,使得f(x)<1成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案