精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x
ax-1
的图象过点(2,2)
(1)求函数f(x)的解析式;
(2)设函数g(x)=
1
x
,则g(x)
的图象经过怎样的变换可与函数f(x)的图象重合;
(3)设函数h(x)=f(x)•g(x),求h(x)在(1,5]上的最小值.
分析:(1)由已知函数f(x)=
x
ax-1
的图象过点(2,2),构造关于a的方程,解方程即可求出a值,进而得到函数f(x)的解析式;
(2)利用函数的图象变换法则,分析g(x)=
1
x
与f (x)=
x
x-1
解析式的关系,即可得到平移变换的方法;
(3)由(1),(2)函数的解析式,我们易求出函数h(x)=f(x)•g(x)的解析式,根据反比例函数的性质,分析出函数在区间(1,5]上的单调性,即可得到h(x)在(1,5]上的最小值.
解答:解:(1)∵f (x)=
x
ax-1
的图象过点(2,2)
2
2a-1
=2,解得:a=1;
∴f (x)=
x
x-1

(2)又f (x)=
(x-1)+1
x-1
=1+
1
x-1

∴可将g (x)=
1
x
的图象向右平移一个单位,得到y=
1
x-1
的图象,然后再把y=
1
x-1
的图象向上平移一个单位,即可与f (x)的图象重合;
(3)h (x)=f (x)•g (x)=
x
x-1
1
x
=
1
x-1
,由图象可知,
函数h (x)在(1,5]上是减函数,
∴h (x)的最小值是h (5)=
1
4
点评:本题考查的知识点是函数图象的变换法则,函数的解析式的求法,函数的最值,其中(1)的关键是根据已知构造关于a的方程,(2)的关键是利用分离常数法,化简函数f(x)的解析式,(3)的关键是分析函数在区间(1,5]上的单调性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-2m2+m+3(m∈Z)为偶函数,且f(3)<f(5).
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,请求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:浙江省东阳中学高三10月阶段性考试数学理科试题 题型:022

已知函数f(x)的图像在[a,b]上连续不断,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,x∈[-1,4]为[-1,4]上的“k阶收缩函数”,则k的值是_________.

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题

已知函数f(x)、g(x),下列说法正确的是( )
A.f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数
B.f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数
C.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数
D.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数

查看答案和解析>>

同步练习册答案