精英家教网 > 高中数学 > 题目详情
已知椭圆的标准方程为,若椭圆的焦距为,则的取值集合为            
{2,4,5}
时,有,此时;当时,有,此时。综上可得,的取值集合为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知+=1的焦点F1、F2,在直线lx+y-6=0上找一点M,求以F1、F2为焦点,通过点M且长轴最短的椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左右焦点为,过点且斜率为正数的直线交椭圆两点,且成等差数列。
(1)求椭圆的离心率;
(2)若直线与椭圆交于两点,求使四边形的面积最大时的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点分别为椭圆的左、右焦点,点为椭圆上任意一点,到焦点的距离的最大值为,且的最大面积为.
(I)求椭圆的方程。
(II)点的坐标为,过点且斜率为的直线与椭圆相交于两点。对于任意的是否为定值?若是求出这个定值;若不是说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)已知椭圆的中心在原点,左焦点为,右顶点为,设点.(1)求该椭圆的标准方程;
(2)若是椭圆上的动点,过P点向椭圆的长轴做垂线,垂足为Q求线段PQ的中点的轨迹方程;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到
两个焦点的距离之和为,离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左、右焦点分别为,过点的直线与该椭圆交于点,
为邻边作平行四边形,求该平行四边形对角线的长度
的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左、右焦点分别为,且经过定点为椭圆上的动点,以点为圆心,为半径作圆.
(1)求椭圆的方程;
(2)若圆轴有两个不同交点,求点横坐标的取值范围;
(3)是否存在定圆,使得圆与圆恒相切?若存在,求出定圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,椭圆上的点到焦点的距离为2,的中点,则为坐标原点)的值为
A.8B.2C.4D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(.(本小题满分12分)
如图,焦距为2的椭圆E的两个顶点分别为,且共线.
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)若直线与椭圆E有两个不同的交点PQ,且原点O总在以PQ为直径的圆的内部,求实数m的取值范围.

查看答案和解析>>

同步练习册答案