精英家教网 > 高中数学 > 题目详情
(本题12分)已知椭圆的中心在原点,左焦点为,右顶点为,设点.(1)求该椭圆的标准方程;
(2)若是椭圆上的动点,过P点向椭圆的长轴做垂线,垂足为Q求线段PQ的中点的轨迹方程;
(1)由已知得椭圆的半长轴=2,半焦距c=,则半短轴b="1." ……………………3分
又椭圆的焦点在x轴上, ∴椭圆的标准方程为……………………5分
(2)设线段PQ的中点为M(x,y) ,点P的坐标是(x0,y0),那么:,即…………9分
由点P在椭圆上,得, ……………………10分
∴线段PQ中点M的轨迹方程是.……………………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知以原点为中心,F(,0)为右焦点的椭圆C,过点F垂直于轴的弦AB长为4.
(1).求椭圆C的标准方程.
(2).设M、N为椭圆C上的两动点,且,点P为椭圆C的右准线与轴的交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)已知椭圆中心为,右顶点为,过定点直线交椭圆于两点.
(1)若直线轴垂直,求三角形面积的最大值;
(2)若,直线的斜率为,求证:
(3)在轴上,是否存在一点,使直线的斜率的乘积为非零常数?若存在,求出点的坐标和这个常数;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的一个焦点为(0,2)则的值为:( )
A.2B.3C.5D.7

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在原点,焦点在轴上的椭圆,离心率,且经过抛物线的焦点.
(1)求椭圆的标准方程;
(2)若过点的直线(斜率不等于零)与椭圆交于不同的两点
之间),面积之比为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的标准方程为,若椭圆的焦距为,则的取值集合为            

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

,的长轴是短轴的2倍,则m=       

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点P是直角坐标平面内的动点,点P到直线的距离为d1,到点F(– 1,0)的距离为d2,且
(1)   求动点P所在曲线C的方程;
(2)   直线过点F且与曲线C交于不同两点AB(点AB不在x轴上),分别过AB点作直线的垂线,对应的垂足分别为,试判断点F与以线段为直径的圆的位置关系(指在圆内、圆上、圆外等情况);
(3)   记(AB是(2)中的点),问是否存在实数,使成立.若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的长轴长是短轴长的倍,则椭圆的离心率等于(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案