精英家教网 > 高中数学 > 题目详情
已知椭圆的一个焦点为(0,2)则的值为:( )
A.2B.3C.5D.7
C
因为是椭圆,所以m>0,化为标准方程得:
又因为一个焦点为(0,2)。故选C
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知平面直角坐标系中点F(1,0)和直线,动圆M过点F且与直线相切。
(1)求M的轨迹L的方程;
(2)过点F作斜率为1的直线交曲线L于A、B两点,求|AB|的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)已知在直角坐标平面XOY中,有一个不在Y轴上的动点P(x,y),到定点F(0,)的距离比它到X轴的距离多,记P点的轨迹为曲线C
(I)求曲线C的方程;
(II)已知点M在Y轴上,且过点F的直线与曲线C交于A、B两点,若 为正三角形,求M点的坐标与直线的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左右焦点为,过点且斜率为正数的直线交椭圆两点,且成等差数列。
(1)求椭圆的离心率;
(2)若直线与椭圆交于两点,求使四边形的面积最大时的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点分别为椭圆的左、右焦点,点为椭圆上任意一点,到焦点的距离的最大值为,且的最大面积为.
(I)求椭圆的方程。
(II)点的坐标为,过点且斜率为的直线与椭圆相交于两点。对于任意的是否为定值?若是求出这个定值;若不是说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)已知椭圆的中心在原点,左焦点为,右顶点为,设点.(1)求该椭圆的标准方程;
(2)若是椭圆上的动点,过P点向椭圆的长轴做垂线,垂足为Q求线段PQ的中点的轨迹方程;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左、右焦点分别为,且经过定点为椭圆上的动点,以点为圆心,为半径作圆.
(1)求椭圆的方程;
(2)若圆轴有两个不同交点,求点横坐标的取值范围;
(3)是否存在定圆,使得圆与圆恒相切?若存在,求出定圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)已知椭圆的离心率为,直线
与椭圆相切.
(1)求椭圆的方程;
(2)设椭圆的左焦点为,右焦点为,直线过点且垂直与椭圆的长轴,动直线垂直于直线于点,线段的垂直平分线交于点,求点的轨迹的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是椭圆C)的两个焦点,P为椭圆C上的一点,且。若的面积为9,则_________。

查看答案和解析>>

同步练习册答案