精英家教网 > 高中数学 > 题目详情

已知函数.
(Ⅰ)当时,求函数的单调区间和极值;
(Ⅱ)若在区间上是单调递减函数,求实数的取值范围.

(Ⅰ)单调递减区间是 ;单调递增区间是.极小值是 
(Ⅱ)的最小值为的取值范围是.

解析试题分析:(Ⅰ)函数的定义域为(0,+∞).
时,              2分
变化时,的变化情况如下:






-
0
+

 
极小值

的单调递减区间是 ;单调递增区间是.
极小值是                          6分
(Ⅱ)由,得           8分
又函数上的单调减函数.
上恒成立, 所以不等式上恒成立,
上恒成立.                        10分
,显然上为减函数,
所以的最小值为的取值范围是.       12分
考点:本题主要考查应用导数研究函数的单调性、极值及最值,恒成立问题解法。
点评:典型题,本题属于导数应用中的基本问题,通过研究函数的单调性,明确了极值情况。通过研究函数的单调区间、最值情况,得到证明不等式。恒成立问题,往往要转化成函数最值求法。本题涉及对数函数,要特别注意函数的定义域。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知正比例函数y=2x的图像l1与反比例函数y=的图像相交于点A(a,2),将直线l1向上平移3个单位得到的直线l2与双曲线相交于BC两点(点B在第一象限),与y轴交于点D

(1)求反比例函数的解析式;
(2)求△DOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)当时,求函数的值域;
(2)若函数是(-,+)上的减函数,求实数的高考资源网取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若处取得极值,求的值;
(2)求的单调区间;
(3)若,函数,若对于,总存在使得,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)求函数的定义域;(6分)
(2)求函数上的值域.(6分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,满足
(1)若方程有唯一的解;求实数的值;
(2)若函数在区间上不是单调函数,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且对任意的实数都有成立.
(1)求实数的值;
(2)利用函数单调性的定义证明函数在区间上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分) 已知为实数,
(1)若,求的单调区间;
(2)若,求在[-2,2] 上的最大值和最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小正周期.
(2)当时,求函数的单调减区间.

查看答案和解析>>

同步练习册答案