精英家教网 > 高中数学 > 题目详情

已知函数
(1)求函数的最小正周期.
(2)当时,求函数的单调减区间.

(1);(2)

解析试题分析:(1)=

(2)当时,
时,函数单调递减
解得:
∴函数的单调减区间为
考点:本题考查了三角函数的性质
点评:三角函数考试大致可分为四类问题(1)与三角函数单调性有关的问题;(2)与三角函数图象有关的问题;(3)应用同角变换和诱导公式,求三角函数值及化简和等式证明的问题;(4)与周期有关的问题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)当时,求函数的单调区间和极值;
(Ⅱ)若在区间上是单调递减函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(Ⅰ)若曲线在点处与直线相切,求的值;
(Ⅱ)求函数的单调区间与极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数,函数的图象在点处的切线平行于轴.
(1)确定的关系;
(2)试讨论函数的单调性;
(3)证明:对任意,都有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在点处的切线方程为
(1)求函数的解析式;
(2)若对于区间[-2,2]上任意两个自变量的值都有求实数c的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数,曲线在点处的切线方程
(1)求的解析式,并判断函数的图像是否为中心对称图形?若是,请求其对称中心;否则说明理由。
(2)证明:曲线上任一点的切线与直线和直线所围三角形的面积为定值,并求出此定值.
(3) 将函数的图象向左平移一个单位后与抛物线为非0常数)的图象有几个交点?(说明理由)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
是实数,
(1)若函数为奇函数,求的值;
(2)试用定义证明:对于任意上为单调递增函数;
(3)若函数为奇函数,且不等式对任意 恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)设,其中为正实数。
(1)当时,求的极值点;
(2)若为R上的单调函数,求的取值范围。

查看答案和解析>>

同步练习册答案