精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
设函数,曲线在点处的切线方程
(1)求的解析式,并判断函数的图像是否为中心对称图形?若是,请求其对称中心;否则说明理由。
(2)证明:曲线上任一点的切线与直线和直线所围三角形的面积为定值,并求出此定值.
(3) 将函数的图象向左平移一个单位后与抛物线为非0常数)的图象有几个交点?(说明理由)

(1) 的图像是以点为中心的中心对称图形.
(2) 三角形的面积为定值
(3) 由三次函数的图象是连续的可知F(x)至少有一零点                           
在R上为减函数(减函数至多有一个零点),
所以此时F(x)有且只有一个零点;

解析试题分析:解:(1),                                      
曲线在点处的切线方程为y=3,
于是                解得        
,故.                                       
,满足,所以是奇函数     
所以,其图像是以原点(0,0)为中心的中心对称图形.                       
而函数的图像按向量平移,即得到函数的图像,
故函数的图像是以点为中心的中心对称图形.                        
(2)证明:在曲线上任取一点.  由知,     
过此点的切线方程为.               
,切线与直线交点为.                 
,切线与直线交点为
直线与直线的交点为.                                  
从而所围三角形的面积为.  
所以,所围三角形的面积为定值.                                        
(3)将函数的图象向左平移一个单位后得到的函数为,
它与抛物线的交点个数等于方程=的解的个数          
法一:
(解的个数,(易知0不是其解,不产生增根)  
的零点(与x轴交点的横坐标)的个数    

由三次函数的图象是连续的可知F(x)至少有一零点                             11分

在R上为减函数(减函数至多有一个零点),
所以此时F(x)有且只有一个零点;
考点:导数的几何意义以及函数零点
点评:解决的关键是能结合导数的几何意义表示切线方程,进而分析函数的零点个数,需要对于a分类讨论得到,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,且对任意的实数都有成立.
(1)求实数的值;
(2)利用函数单调性的定义证明函数在区间上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
(1)判断函数的奇偶性;
(2)若在区间是增函数,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小正周期.
(2)当时,求函数的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)生物体死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.
(Ⅰ)设生物体死亡时体内每克组织中的碳14的含量为1,根据上述规律,写出生物体内碳14的含量与死亡年数之间的函数关系式;
(Ⅱ)湖南长沙马王堆汉墓女尸出土时碳14的残余量约占原始含量的76.7℅,试推算马王堆汉墓的年代.(精确到个位;辅助数据:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
(1)写出函数的递减区间;
(2)讨论函数的极大值或极小值,如有试写出极值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共10分)
已知函数
(1)解关于的不等式
(2)若函数的图象恒在函数图象的上方(没有公共点),求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
(1)若函数上为增函数,求正实数的取值范围;
(2)当时,求上的最大值和最小值;
(3) 当时,求证:对大于1的任意正整数,都有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知函数在点处的切线方程为
⑴求函数的解析式;
⑵若对于区间上任意两个自变量的值都有,求实数的最小值;

查看答案和解析>>

同步练习册答案