精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
已知函数
(1)写出函数的递减区间;
(2)讨论函数的极大值或极小值,如有试写出极值;

(1)(2)函数极大值,极小值

解析试题分析:解:令,得
x变化时,的符号变化情况及的增减性如下表所示:



-1

3


+
0
-
0
+


极大值

极小值

(1)由表可得函数的递减区间为
(2)由表可得,当时,函数有极大值;当时,函数有极小值
考点:函数的单调性与导数的关系;函数的极值与函数的关系。
点评:求函数的性质,常结合函数的导数来求出。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数为常数,)是上的奇函数.
(Ⅰ)求的值;(Ⅱ)讨论关于的方程的根的个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(Ⅰ)若曲线在点处与直线相切,求的值;
(Ⅱ)求函数的单调区间与极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在点处的切线方程为
(1)求函数的解析式;
(2)若对于区间[-2,2]上任意两个自变量的值都有求实数c的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数,曲线在点处的切线方程
(1)求的解析式,并判断函数的图像是否为中心对称图形?若是,请求其对称中心;否则说明理由。
(2)证明:曲线上任一点的切线与直线和直线所围三角形的面积为定值,并求出此定值.
(3) 将函数的图象向左平移一个单位后与抛物线为非0常数)的图象有几个交点?(说明理由)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数
(1)求函数的单调区间和值域。
(2)设,求函数,若对于任意,总存在,使得成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
是实数,
(1)若函数为奇函数,求的值;
(2)试用定义证明:对于任意上为单调递增函数;
(3)若函数为奇函数,且不等式对任意 恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)
已知函数,其中
求函数的最大值和最小值;
若实数满足:恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)若对定义域内任意,都有成立,求实数的值;
(2)若函数在定义域上是单调函数,求的范围;
(3)若,证明对任意正整数,不等式都成立.

查看答案和解析>>

同步练习册答案