(本题满分12分)生物体死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.
(Ⅰ)设生物体死亡时体内每克组织中的碳14的含量为1,根据上述规律,写出生物体内碳14的含量与死亡年数之间的函数关系式;
(Ⅱ)湖南长沙马王堆汉墓女尸出土时碳14的残余量约占原始含量的76.7℅,试推算马王堆汉墓的年代.(精确到个位;辅助数据:)
科目:高中数学 来源: 题型:解答题
已知函数在点(1,f(1))处的切线方程为y = 2.
(I)求f(x)的解析式;
(II)设函数若对任意的,总存唯一实数,使得,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数=,数列满足,。(12分)
(1)求数列的通项公式;
(2)令-+-+…+-求;
(3)令=(,,+++┅,若<对一切都成立,求最小的正整数。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
设函数,曲线在点处的切线方程.
(1)求的解析式,并判断函数的图像是否为中心对称图形?若是,请求其对称中心;否则说明理由。
(2)证明:曲线上任一点的切线与直线和直线所围三角形的面积为定值,并求出此定值.
(3) 将函数的图象向左平移一个单位后与抛物线(为非0常数)的图象有几个交点?(说明理由)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数,,已知为函数的极值点
(1)求函数在上的单调区间,并说明理由.
(2)若曲线在处的切线斜率为-4,且方程有两个不相等的负实根,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
我们把定义在上,且满足(其中常数满足)的函数叫做似周期函数.
(1)若某个似周期函数满足且图像关于直线对称.求证:函数是偶函数;
(2)当时,某个似周期函数在时的解析式为,求函数,的解析式;
(3)对于确定的时,,试研究似周期函数函数在区间上是否可能是单调函数?若可能,求出的取值范围;若不可能,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知函数其中
(1)、若的单调增区间是(0.1),求m的值
(2)、当时,函数的图像上任意一点的切线斜率恒大于3m,求m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com