精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
已知函数其中
(1)、若的单调增区间是(0.1),求m的值
(2)、当时,函数的图像上任意一点的切线斜率恒大于3m,求m的取值范围.

(1) m="-2" ;(2)(-1,0)

解析试题分析:(1)
                  (1分)
因为的增区间是(0,1)
的解集为(0,1)
所以        (3分)
解得m=-2                                            (4分)
(2)、设图像上任意一点
切线斜率K=        
上恒成立
,则 (6分)
的对称轴为
ⅰ当
                        (8分)
ⅱ当
                               
此时无解。                                              (10分)
综上所述:的取值范围(-1,0)                        (12分)
考点:本题考查了导函数的运用
点评:导数的应用是高考的一个重点,考查了分类讨论思想,要注意分类讨论时做到不重不漏

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)生物体死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.
(Ⅰ)设生物体死亡时体内每克组织中的碳14的含量为1,根据上述规律,写出生物体内碳14的含量与死亡年数之间的函数关系式;
(Ⅱ)湖南长沙马王堆汉墓女尸出土时碳14的残余量约占原始含量的76.7℅,试推算马王堆汉墓的年代.(精确到个位;辅助数据:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)画出函数的图象,写出函数的单调区间;
(2)解关于的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)(某商品进货单价为元,若销售价为元,可卖出个,如果销售单价每涨元,销售量就减少个,为了获得最大利润,则此商品的最佳售价应为多少?)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数,其中.(1) 讨论函数的单调性,并求出的极值;(2) 若对于任意,都存在,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知函数在点处的切线方程为
⑴求函数的解析式;
⑵若对于区间上任意两个自变量的值都有,求实数的最小值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数,其中表示不超过的最大整数,如.
 (1)求的值;
(2)若在区间上存在x,使得成立,求实数k的取值范围;
(3)求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)它是奇函数还是偶函数?并给出证明.
(2)它的图象具有怎样的对称性?
(3)它在上是增函数还是减函数?并用定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,设函数的图象关于直线=π对称,其中为常数,且
(Ⅰ)求函数的最小正周期;
(Ⅱ)若的图象经过点,求函数在区间上的取值范围.

查看答案和解析>>

同步练习册答案