精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
已知函数
(1)若函数上为增函数,求正实数的取值范围;
(2)当时,求上的最大值和最小值;
(3) 当时,求证:对大于1的任意正整数,都有

(1)(2)最大值为,最小值为(3)
函数上为增函数,当时,令
 所以

解析试题分析:(1)
函数上为增函数,对任意的恒成立,
对任意的恒成立,即任意的恒成立,…………2分
而当时,                      ……………………4分
(2)当时,
变化时,的变化情况如下表




1

2

 

0

 



0

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数,曲线在点处的切线方程
(1)求的解析式,并判断函数的图像是否为中心对称图形?若是,请求其对称中心;否则说明理由。
(2)证明:曲线上任一点的切线与直线和直线所围三角形的面积为定值,并求出此定值.
(3) 将函数的图象向左平移一个单位后与抛物线为非0常数)的图象有几个交点?(说明理由)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
是实数,
(1)若函数为奇函数,求的值;
(2)试用定义证明:对于任意上为单调递增函数;
(3)若函数为奇函数,且不等式对任意 恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
我们把定义在上,且满足(其中常数满足)的函数叫做似周期函数.
(1)若某个似周期函数满足且图像关于直线对称.求证:函数是偶函数;
(2)当时,某个似周期函数在时的解析式为,求函数的解析式;
(3)对于确定的时,,试研究似周期函数函数在区间上是否可能是单调函数?若可能,求出的取值范围;若不可能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)
已知函数,其中
求函数的最大值和最小值;
若实数满足:恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
设函数.
(1)求函数的单调增区间;
(2)若不等式恒成立,求实数m的取值范围.
(3)若对任意的,总存在,使不等式成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)设,其中为正实数。
(1)当时,求的极值点;
(2)若为R上的单调函数,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若不等式对任意的实数恒成立,求实数的取值范围;
(2)设,且上单调递增,求实数的取值范围。

查看答案和解析>>

同步练习册答案