精英家教网 > 高中数学 > 题目详情

,求

解析试题分析:1)题意分析:已知,求
2)解题思路:换元法
解:令,则

考点:函数的解析式
点评:凡是已知,求的题型,均可用换元法求解,在换元的过程中要注意新元的取值范围

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数
(1)当时,求函数的值域;
(2)若函数是(-,+)上的减函数,求实数的高考资源网取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且对任意的实数都有成立.
(1)求实数的值;
(2)利用函数单调性的定义证明函数在区间上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分) 已知为实数,
(1)若,求的单调区间;
(2)若,求在[-2,2] 上的最大值和最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求函数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知定义域为的函数是奇函数。
(Ⅰ)求的值;
(Ⅱ)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
(1)判断函数的奇偶性;
(2)若在区间是增函数,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小正周期.
(2)当时,求函数的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
(1)若函数上为增函数,求正实数的取值范围;
(2)当时,求上的最大值和最小值;
(3) 当时,求证:对大于1的任意正整数,都有

查看答案和解析>>

同步练习册答案