精英家教网 > 高中数学 > 题目详情
已知函数g(x)=
1
3
ax3+2x2-2x
,函数f(x)是函数g(x)的导函数.
(1)若a=1,求g(x)的单调减区间;
(2)当a∈(0,+∞)时,若存在一个与a有关的负数M,使得对任意x∈[M,0]时,-4≤f(x)≤4恒成立,求M的最小值及相应的a值.
(1)当a=1时,g(x)=
1
3
x3+2x2-2x,g′(x)=x2+4x-2
…(2分)
由g'(x)<0解得-2-
6
<x<-2+
6
…(4分)
∴当a=1时函数g(x)的单调减区间为(-2-
6
,-2+
6
)
;…(5分)
(2)易知f(x)=ax2+4x-2=a(x+
2
a
)2-2-
4
a

显然f(0)=-2,由(2)知抛物线的对称轴x=-
2
a
<0
…(7分)
①当-2-
4
a
<-4
即0<a<2时,M∈(-
2
a
,0)
且f(M)=-4令ax2+4x-2=-4解得x=
-2±
4-2a
a
…(8分)
此时M取较大的根,即M=
-2+
4-2a
a
=
-2
4-2a
+2
…(9分)
∵0<a<2,∴M=
-2
4-2a
+2
>-1
…(10分)
②当-2-
4
a
≥-4
即a≥2时,M<-
2
a
且f(M)=4
令ax2+4x-2=4解得x=
-2±
4+6a
a
…(11分)
此时M取较小的根,即M=
-2-
4+6a
a
=
-6
4+6a
-2
…(12分)
∵a≥2,∴M=
-6
4+6a
-2
≥-3
当且仅当a=2时取等号…(13分)
由于-3<-1,所以当a=2时,M取得最小值-3  …(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数g(x)=1-cos(πx+2φ)(0<φ<
π
2
)
的图象过点(
1
2
,  2)
,若有4个不同的正数xi满足g(xi)=M(0<M<1),且xi<4(i=1,2,3,4),则x1+x2+x3+x4等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=
1-x21+x2
(x≠0,x≠±1,x∈R)
的值域为A,定义在A上的函数f(x)=x-2-x2(x∈A).
(1)判断函数f(x)的奇偶性;
(2)判断函数f(x)的单调性并用定义证明;
(3)解不等式f(3x+1)>f(5x+1).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=
1-2x1+2x
.判断并证明函数g(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=1+x-
x2
2
+
x3
3
-
x4
4
+…+
x2013
2013
,则函数g(x+3)的零点所在的区间为(  )
A、(-1,0)
B、(-4,-3)
C、(-3,-2)或(-2,-1)
D、(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=
-1,x>0
0,x=0
1,x<0
,函数f(x)=x2?g(x),则满足不等式f(a-2)+f(a2)>0的实数a的取值范围是(  )
A、(-2,1)
B、(-1,2)
C、(-∞,-2)∪(1,+∞)
D、(-∞,-1)∪(2,+∞)

查看答案和解析>>

同步练习册答案