精英家教网 > 高中数学 > 题目详情
9.0°~90°间的角可表示为(  )
A.{a|0°<a<90°}B.{a|0°≤a<90°}C.{a|0°<a≤90°}D.{a|0°≤a≤90°}

分析 由0°~90°间的角包含0°和90°得答案.

解答 解:0°~90°间的角包含0°和90°,可表示为{a|0°≤a≤90°}.
故选:D.

点评 本题考查0°~90°间的角的概念,属记忆型问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知等差数列{an},满足a5+a7=6,则此数列的前11项的和S11=33.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知m∈{x|ex-1+x-2=0},n∈{x|x2-ax-a+3=0},且存在m,n使|m-n|≤1,则实数a的取值范围为[2,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=a2x2+ax在区间(0,1)上有零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足$\frac{a}{sinA}$=$\frac{\sqrt{3}c}{cosC}$.
(1)求角C的大小;
(2)若B+C=$\frac{5π}{12}$,b=$\sqrt{2}$,求c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.命题p:?x∈R,|x-1|+|x+1|≥a,命题q:?x∈R,使得不等式log2(x2-2x+17)<a有解,命题p,q有且仅有一个命题成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求下列函数的定义域:
(1)y=$\sqrt{lo{g}_{2}(4x-3)}$;
(2)y=log5-x(2x-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知,a,b,c(a>b>c)是△ABC的角A,B,C的对边,若4sin2(B+C)-3=0,则$\frac{asin(\frac{π}{6}-C)}{b-c}$的值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{4}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列各组中的两个函数是相同函数的为(  )
A.f(x)=$\frac{(x+3)(x-5)}{x+3}$,g(x)=x-5B.f(x)=x,g(x)=$\sqrt{x^2}$
C.f(x)=x,g(x)=$\root{3}{x^3}$D.f(x)=$\sqrt{x+1}\sqrt{x-1}$,g(x)=$\sqrt{(x+1)(x-1)}$

查看答案和解析>>

同步练习册答案