精英家教网 > 高中数学 > 题目详情
在锐角△ABC中,a=2
7
sinA且b=
21

(Ⅰ)求B的大小;
(Ⅱ)若a=3c,求c的值.
考点:余弦定理,正弦定理
专题:三角函数的求值
分析:(Ⅰ)利用正弦定理列出关系式,将已知等式与b的值代入即可求出B的大小;
(Ⅱ)利用余弦定理列出关系式,将a=3c,b,以及cosB的值代入求出c的值,判断即可得到结果.
解答: 解:(Ⅰ)由正弦定理可得
a
sinA
=
b
sinB

∵a=2
7
sinA,b=
21

∴sinB=
bsinA
a
=
21
sinA
2
7
sinA
=
3
2

则在锐角△ABC中,B=60°;
(Ⅱ)由余弦定理可得b2=a2+c2-2accosB,
又a=3c,b=
21
,cosB=
1
2

∴21=9c2+c2-3c2,即c2=3,
解得:c=
3

经检验,由cosA=
b2+c2-a2
2bc
=-
1
2
7
<0,可得A>90°,不符合题意,
则a=3c时,此三角形无解.
点评:此题考查了正弦、余弦定理,熟练掌握定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2+1,且g(x)=f[f(x)],G(x)=g(x)-2af(x)
(1)若a=3,求函数G(x)的最小值;
(2)是否存在实数a使得G(x)在(-∞,-1)上为减函数,在(-1,0)为增函数?若存在,求出实数a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,且a2=8,S4=40.数列{bn}的前n项和为Tn,且Tn-2bn+3=0,n∈N*
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=
an,n为奇数
bn,n为偶数
,求数列{cn}的前n项和Pn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
1
2
,以原点为圆心、椭圆的短半轴长为半径的圆与直线x-y+2
6
=0相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设A(-4,0),过点R(3,0)作与x轴不重合的直线l交椭圆于P,Q两点,连结AP,AQ分别交直线x=
16
3
于M,N两点,试探究直线MR、NR的斜率之积是否为定值,若为定值,请求出;若不为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F(1,0),直线l:x=-1,动点P到点F的距离与到直线l的距离相等.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)直线y=
3
x+b与曲线C交于A,B两点,若曲线C上存在点D使得四边形FABD为平行四边形,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在一次招聘考试中,有12道备选题,其中8道A类题,4道B类题,每位考生都要在其中随机抽出3道题回答
(Ⅰ)求某考生至少抽到1道B类题的概率;
(Ⅱ)已知所抽出的3道题中有2道A类题,1道B类题,设该考生答对每道A类题的概率都是
3
5
,答对每道B类题的概率都是
4
5
,且各题答对与否相互独立,用X表示该考生答对题的个数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

小明打算从A组和B组两组花样滑冰动作中选择一组参加比赛.已知小明选择A组动作的概率是选择B组动作的概率的3倍,若小明选择A组动作并正常发挥可获得10分,没有正常发挥只能获得6分;若小明选择B组动作则一定能正常发挥并获得8分.据平时训练成绩统计,小明能正常发挥A组动作的概率是0.8.
(Ⅰ)求小明选择A组动作的概率;
(Ⅱ)设ξ表示小明比赛时获得的分数,求ξ的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x),g(x)都是单调函数,有如下四个命题:
①若f(x)单调递增,g(x)单调递增,则f(x)-g(x)单调递增;
②若f(x)单调递增,g(x)单调递减,则f(x)-g(x)单调递增;
③若f(x)单调递减,g(x)单调递增,则f(x)-g(x)单调递减;
④若f(x)单调递减,g(x)单调递减,则f(x)-g(x)单调递减;
其中,正确的命题是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}的前n项和为Sn,若a3+a9-a5=6,则S13=
 

查看答案和解析>>

同步练习册答案