精英家教网 > 高中数学 > 题目详情
用数学归纳法证明:
通过两步(n=1,n=k+1)证明即可得出结论。

试题分析:解:当n=1时,等式左边为2,右边为2,左边等于右边,当n=k时,假设成立,可以得到(k+1)+(k+2)+…+(k+k)= 
n=k+1时等式左边与n=k时的等式左边的差,即为n=k+1时等式左边增加的项,由题意,n=k时,等式左边=(k+1)+(k+2)+…+(k+k),n=k+1时,等式左边=(k+2)+(k+3)+…+(k+k+1)+(k+1+k+1),比较可得n=k+1时等式左边等于右边,进而综上可知,满足题意的所有正整数都成立,故证明。
点评:本题的考点是数学归纳法,主要考查数学归纳法的第二步,在假设的基础上,n=k+1时等式左边增加的项,关键是搞清n=k时,等式左边的规律,从而使问题得解
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

数列中,,其前n项和满足
(1)计算
(2)猜想的表达式并用数学归纳法证明。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对于数集,其中,定义向量集. 若对于任意,存在,使得,则称X具有性质P.例如具有性质P.
(1)若x>2,且,求x的值;(4分)
(2)若X具有性质P,求证:且当xn>1时,x1=1;(6分)
(3)若X具有性质P,且x1=1,x2=qq为常数),求有穷数列的通
项公式.(8分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

的展开式中,的系数为的系数为,其中
(1)求(2)是否存在常数p,q(p<q),使,对恒成立?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知n是正偶数,用数学归纳法证明时,若已假设n=k(k≥2且为偶数)时命题为真,则还需证明(  )
A.n=k+1时命题成立
B.n=k+2时命题成立
C.n=2k+2时命题成立
D.n=2(k+2)时命题成立

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,考查



归纳出对都成立的类似不等式,并用数学归纳法加以证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

是否存在实数使得关于n的等式
成立?若存在,求出的值并证明等式,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知n为正偶数,用数学归纳法证明 时,若已假设为偶数)时命题为真,则还需要用归纳假设再证(   )时等式成立           (    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在数列{an}中,an=1-+…+,则ak+1等于(  )
A.akB.ak
C.akD.ak

查看答案和解析>>

同步练习册答案