精英家教网 > 高中数学 > 题目详情

【题目】设函数,其中是自然对数的底数.

1)若上存在两个极值点,求的取值范围;

2)若,函数与函数的图象交于,且线段的中点为,证明:

【答案】1;;(2)见解析.

【解析】

1)求导,依题意,导函数满足上有两个不等实根,转化可得,构造函数,利用导数可知,且由的趋近性可求得实数的取值范围;

2)问题转化为证明,通过换元令,即证,再分别证明即可.

1)由题意可知,,令

上存在两个极值点等价于上有两个不等实根,

可得

,则

,则

时,,故函数上单调递减,且

时,单调递增,

时,单调递减,

的极大值也是最大值,

又当时,,当时,大于0且趋向于0

要使有两个根,则

2)由题意可得

要证1成立,

只需证,即

,即证

要证,只需证

,则

上为增函数,

,即成立;

要证,只需证

,则

上为减函数,

,即成立;

成立,

成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知abc为正实数,且满足a+b+c1.证明:

1|a|+|b+c1|

2)(a3+b3+c3)(≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020312日,国务院新闻办公室发布会重点介绍了改革开放40年,特别是党的十八大以来我国脱贫攻坚、精准扶贫取得的显著成绩,这些成绩为全面脱贫初步建成小康社会奠定了坚实的基础.下图是统计局公布的2010年~2019年年底的贫困人口和贫困发生率统计表.则下面结论正确的是(

(年底贫困人口的线性回归方程为(其中年份-2019),贫困发生率的线性回归方程为(其中年份-2009)

A.2010年~2019年十年间脱贫人口逐年减少,贫困发生率逐年下降

B.2012~2019年连续八年每年减贫超过1000万,且2019年贫困发生率最低

C.2010年~2019年十年间超过1.65亿人脱贫,其中2015年贫困发生率低于6

D.根据图中趋势线可以预测,到2020年底我国将实现全面脱贫

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,四点中恰有三个点在椭圆C上,左、右焦点分别为F1F2

1)求椭圆C的方程;

2)过左焦点F1且不平行坐标轴的直线l交椭圆于PQ两点,若PQ的中点为NO为原点,直线ON交直线x=﹣3于点M,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中是自然对数的底数.

1)若上存在两个极值点,求的取值范围;

2)若,函数与函数的图象交于,且线段的中点为,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1),求函数的单调区间;

(2)的极小值点,求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】法国数学家庞加是个喜欢吃面包的人,他每天都会购买一个面包,面包师声称自己出售的每个面包的平均质量是1000,上下浮动不超过50.这句话用数学语言来表达就是:每个面包的质量服从期望为1000,标准差为50的正态分布.

1)假设面包师的说法是真实的,从面包师出售的面包中任取两个,记取出的两个面包中质量大于1000的个数为,求的分布列和数学期望;

2)作为一个善于思考的数学家,庞加莱每天都会将买来的面包称重并记录,25天后,得到数据如下表,经计算25个面包总质量为24468.庞加莱购买的25个面包质量的统计数据(单位:

981

972

966

992

1010

1008

954

952

969

978

989

1001

1006

957

952

969

981

984

952

959

987

1006

1000

977

966

尽管上述数据都落在上,但庞加菜还是认为面包师撒谎,根据所附信息,从概率角度说明理由

附:

,从X的取值中随机抽取25个数据,记这25个数据的平均值为Y,则由统计学知识可知:随机变量

,则

通常把发生概率在0.05以下的事件称为小概率事件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数),以原点为极点, 轴正半轴为极轴建立极坐标系,曲线的方程为,定点,点是曲线上的动点, 的中点.

(1)求点的轨迹的直角坐标方程;

(2)已知直线轴的交点为,与曲线的交点为,若的中点为,求的长.

查看答案和解析>>

同步练习册答案