精英家教网 > 高中数学 > 题目详情
5.已知函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的一段图象如图.
(1)求出这个函数的解析式.
(2)求出图象的对称中心及单调增区间.

分析 (1)由函数的图象的顶点坐标求出A,由周期求出ω,由特殊点的坐标法作图求出φ的值,可得函数的解析式.
(2)由条件利用正弦函数的单调性以及它的图象的对称性,求得函数图象的对称中心及函数的单调增区间.

解答 解:(1)由函数y=Asin(ωx+φ)的图象易知A=$2\sqrt{2}$,$\frac{T}{4}$=6-2=4.
∴T=16,∴$\frac{2π}{ω}$=16,∴ω=$\frac{π}{8}$.
又图象过点(2,$2\sqrt{2}$),∴2$\sqrt{2}$sin($\frac{π}{8}$×2+φ)=2$\sqrt{2}$,∴$\frac{π}{8}$×2+φ=2kπ+$\frac{π}{2}$,k∈Z.
∵|φ|<$\frac{π}{2}$,∴φ=$\frac{π}{4}$,于是 y=2$\sqrt{2}$sin($\frac{π}{8}$x+$\frac{π}{4}$).
(2)由于函数的周期为16,结合图象可得一个对称中心为(6,0),故函数的图象的对称中心的坐标为(8k+6,0)(k∈Z).
由函数的图象以及函数的周期性可得函数的单调增区间[-6+16k,2+16k],k∈Z.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由特殊点的坐标法作图求出φ的值,正弦函数的单调性以及它的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知a>1,b>1,c>1,且ab=10,求证:logac+logbc≥4lgc.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知a,b,c均为正数,若a+b+c,b+c-a,c+a-b,a+b-c依次成等比数列,且公比为q,则q3+q2+q值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.关于函数f(x)=x-$\frac{a}{x}$(a>0),有下列四个命题:
①f(x)的值域是(-∞,0)∪(0,+∞);
②f(x)是奇函数;
③f(x)在(-∞,0)和(0,+∞)上单调递增;
④f(x)图象关于y轴对称.
其中正确的是(  )
A.仅①②B.仅②④C.仅②③D.仅③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=2sin({\frac{1}{3}x-\frac{π}{6}}),x∈R$.
(1)求$f({\frac{5π}{4}})$的值;
(2)求$f({\frac{2π}{3}})f({\frac{4π}{3}})f({\frac{5π}{3}})$的值;
(2)设$α,β∈[{0,\frac{π}{2}}],f({3α+\frac{π}{2}})=\frac{10}{13},f({3β+2π})=\frac{6}{5}$,求$cos\frac{α+β}{2}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=x2-2x+2的值域是(  )
A.(-∞,+∞)B.(0,+∞)C.[1,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.甲乙丙丁四位同学各自对A,B两变量的线性相关性进行分析,并用回归分析方法得到相关系数r与残差平方和m,如表则哪位同学的试验结果体现A,B两变量更强的线性相关性(  )
 
r0.820.780.690.85
m115106124103
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某校高三年级参加市高考模拟考试的同学有1 000人,用系统抽样法抽取了一个容量为200的学生总成绩的样本,分数段及各分数段人数如下(满分750分):
分数段[250,350)[350,450)[450,550)[550,650)[650,750)
人数2030804030
(1)列出频率分布表;
(2)画出频率分布直方图;
(3)模拟本科的划线成绩为550分,试估计该校的上线人数大约是多少.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如果对定义在R上的函数f(x),对任意两个不相等的实数x1,x2,都有x1f(x1)+x2f(x2)<x1f(x2)+x2f(x1),则称函数f(x)为“M函数”.
给出下列函数①y=x2;  ②y=ex+1; ③y=-2x-sin x;④f(x)=$\left\{\begin{array}{l}{ln|x|,x≠0}\\{0,x=0}\end{array}\right.$;⑤f(x)=xex(x>-1).
以上函数是“M函数”的所有序号为③.

查看答案和解析>>

同步练习册答案