精英家教网 > 高中数学 > 题目详情
10.函数f(x)=x2-2x+2的值域是(  )
A.(-∞,+∞)B.(0,+∞)C.[1,+∞)D.(2,+∞)

分析 根据一元二次函数的性质进行求解即可.

解答 解:f(x)=x2-2x+2=(x-1)2+1≥1,
故函数的值域为[1,+∞),
故选:C

点评 本题主要考查函数值域的求解,根据配方法结合一元二次函数的性质进行求解是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知x,y∈(0,+∞),当x2+y2=1时,有x$\sqrt{1-{y}^{2}}$+y$\sqrt{1-{x}^{2}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=(ax2+x-1)ex,a∈R.
(1)若a=1,求曲线f(x)在点(0,f(0))处的切线方程;
(2)若a<0,求f(x)的单调区间.
(3)若a=-1,函数f(x)的图象与函数g(x)=$\frac{1}{3}{x^3}+\frac{1}{2}{x^2}$+m的图象有3个不同的交点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.当m∈(-2,-1)时,点(1,2)和点(1,1)在y-3x-m=0的异侧.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的一段图象如图.
(1)求出这个函数的解析式.
(2)求出图象的对称中心及单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)=\frac{1}{x+2},x∈(-∞,-3)$,解不等式f(2x)>f(x-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设数列{an}的前n项和为Sn,且对于任意的n∈N*,都有Sn=2an-3n.求数列{an}的首项a1与递推关系式:an+1=f(an).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.样本数据4,2,1,0,-2,标准差是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设$\overrightarrow a,\overrightarrow b,\overrightarrow c$是单位向量,且$\overrightarrow a•\overrightarrow b=0$,则$(\overrightarrow a-\overrightarrow c)•(\overrightarrow b-\overrightarrow c)$的最小值是(  )
A.$1-\sqrt{2}$B.$\sqrt{2}-1$C.$1-\sqrt{3}$D.$\sqrt{3}-1$

查看答案和解析>>

同步练习册答案