精英家教网 > 高中数学 > 题目详情

【题目】若函数y=f(x)是定义在R上的可导函数,则f′(x0)=0是x0为函数y=f(x)的极值点的(
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件

【答案】B
【解析】解:如y=x3 , y′=3x2 , y′|x=0=0,但x=0不是函数的极值点.
若函数在x0取得极值,由定义可知f′(x0)=0
所以f′(x0)=0是x0为函数y=f(x)的极值点的必要不充分条件
故选B
结合极值的定义可知必要性成立,而充分性中除了要求f′(x0)=0外,还的要求在两侧有单调性的改变(或导函数有正负变化),通过反例可知充分性不成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】不等式|x2-2|<2的解集是( ).
A.(-1,1)
B.(-2,2)
C.(-1,0)∪(0,1)
D.(-2,0)∪(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,lα,lβ,则(
A.α∥β且l∥α
B.α⊥β且l⊥β
C.α与β相交,且交线垂直于l
D.α与β相交,且交线平行于l

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ln(2+x)+ln(2﹣x),则f(x)是(
A.奇函数,且在(0,2)上是增函数
B.奇函数,且在(0,2)上是减函数
C.偶函数,且在(0,2)上是增函数
D.偶函数,且在(0,2)上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x1﹣x1=3,则x2+x2等于 . (用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果f(x)是定义在R上的奇函数,那么下列函数中,一定为偶函数的是(
A.y=x+f(x)
B.y=xf(x)
C.y=x2+f(x)
D.y=x2f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知0<a<1,b<﹣1,则函数y=ax+b的图象必定不经过( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用数学归纳法证明1+2+3+…+(2n+1)=(n+1)(2n+1)时,从n=k到n=k+1,左边需增添的代数式是(
A.2k+2
B.2k+3
C.2k+1
D.(2k+2)+(2k+3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对任意实数a,b,c,d,命题:
①若a>b,c≠0,则ac>bc;
②若a>b,则ac2>bc2
③若ac2>bc2 , 则a>b.
其中真命题的个数是( )
A.0
B.1
C.2
D.3

查看答案和解析>>

同步练习册答案