精英家教网 > 高中数学 > 题目详情

已知函数f(x)=lnx,g(x)=数学公式(a>0),设h(x)=f(x)+g(x).
(1)求h(x)的单调区间;
(2)若在y=h(x)在x∈(0,3]的图象上存在一点P(x0,y0),使得以P(x0,y0)为切点的切线的斜率数学公式成立,求实数a的最大值.

解:(1)h(x)=f(x)+g(x)=lnx+,其定义域为(0,+∞).
h′(x)=-=,令h′(x)==0,则x=a
于是,当x>a时,h′(x)>0,h(x)为增函数;
当x<a时,h′(x)<0,h(x)为减函数;
∴h(x)的单调增区间为(a,+∞),h(x)的单调减区间是(0,a).
(2)∵h′(x0)==k,
∴在区间(0,3]上存在一点P(x0,y0),使得以P(x0,y0)为切点的切线的斜率h′(x0)=k=成立,
即a≤-+x0,等价于a≤(x∈(0,3]).
∵-+x0=-+
=
于是a≤,即a的最大值为
分析:(1)由于h′(x)=,由h′(x)>0,可求其单调增区间,h′(x)<0可求其单调减区间;
(2)依题意,以P(x0,y0)为切点的切线的斜率h′(x0)=k=成立?a≤(x∈(0,3]),求得即可.
点评:本题考查利用导数研究函数的单调性,利用导数的几何意义研究曲线上某点切线方程,考查分析问题与等价转化解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案