精英家教网 > 高中数学 > 题目详情
在△ABC中,a,b,c分别为内角A、B、C所对的边,那么
b•cosC-a
bcosA-c
-
sinC
sinA
的值为(  )
A、-1B、0C、1D、2
分析:首先利用正弦定理将所求式子化成
sinBcosC-sinA
sinBcosA-sinC
-
sinC
sinA
,然后根据sinA=sin(B+C),进一步化简即可.
解答:解:由正弦定理知
a
sinA
=
b
sinB
=
c
sinC

代入得
b•cosC-a
bcosA-c
-
sinC
sinA
=
sinBcosC-sinA
sinBcosA-sinC
-
sinC
sinA

=
sinBcosC-sinBcosc-cosBsinC
sinBcosA-sinAcosB-cosAsinB
-
sinC
sinA

=
cosBsinC
sinAcosB
-
sinC
sinA

=
sinC
sinA
-
sinC
sinA
=0
故选B.
点评:本题考查了正弦定理以及同角三角函数的运算,sinA=sin[π-(B+C)]=sin(B+C)是解题的关键,做题过程中要细心,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.满足2acosC+ccosA=b.则sinA+sinB的最大值是(  )
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a<b<c,B=60°,面积为10
3
cm2,周长为20cm,求此三角形的各边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C的对边,已知
.
m
=(cos
C
2
,sin
C
2
)
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面积S=
3
3
2
,求边c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A,B,C为三个内角,若cotA•cotB>1,则△ABC是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)函数的图象是由y=sinx的图象经过如下三步变换得到的:
①将y=sinx的图象整体向左平移
π
6
个单位;
②将①中的图象的纵坐标不变,横坐标缩短为原来的
1
2

③将②中的图象的横坐标不变,纵坐标伸长为原来的2倍.
(1)求f(x)的周期和对称轴;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步练习册答案